Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Challenge: Noise Reduction in Sensor Data | Signal Processing for Electrical Engineers
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Electrical Engineers

bookChallenge: Noise Reduction in Sensor Data

In previous chapters, you explored the basics of signals, waveforms, and filtering techniques in Python. Now, you will apply these concepts to a practical scenarioβ€”reducing noise in sensor data. Sensor readings in real-world electrical engineering applications are often affected by random noise, making it challenging to interpret the true signal. To address this, you can simulate a noisy sensor signal by generating a sine wave (representing the ideal temperature variation) and adding random noise to it. The next step is to apply a moving average filter, which is a simple yet effective way to smooth out short-term fluctuations and highlight longer-term trends in the data. By plotting both the original noisy signal and the filtered output, you can visually compare the effectiveness of the noise reduction technique.

Task

Swipe to start coding

Write a Python script to simulate a noisy temperature sensor signal, apply a moving average filter, and visualize the results.

  • Generate a time array and a noisy sine wave signal using the specified parameters.
  • Implement a moving average filter to smooth the noisy signal.
  • Return the time array and noisy signal from the signal generation function.
  • Return the filtered signal from the filter function.
  • Plot both the original noisy signal and the filtered signal using the given plotting code.

Solution

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 2. ChapterΒ 5
single

single

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

close

bookChallenge: Noise Reduction in Sensor Data

Swipe to show menu

In previous chapters, you explored the basics of signals, waveforms, and filtering techniques in Python. Now, you will apply these concepts to a practical scenarioβ€”reducing noise in sensor data. Sensor readings in real-world electrical engineering applications are often affected by random noise, making it challenging to interpret the true signal. To address this, you can simulate a noisy sensor signal by generating a sine wave (representing the ideal temperature variation) and adding random noise to it. The next step is to apply a moving average filter, which is a simple yet effective way to smooth out short-term fluctuations and highlight longer-term trends in the data. By plotting both the original noisy signal and the filtered output, you can visually compare the effectiveness of the noise reduction technique.

Task

Swipe to start coding

Write a Python script to simulate a noisy temperature sensor signal, apply a moving average filter, and visualize the results.

  • Generate a time array and a noisy sine wave signal using the specified parameters.
  • Implement a moving average filter to smooth the noisy signal.
  • Return the time array and noisy signal from the signal generation function.
  • Return the filtered signal from the filter function.
  • Plot both the original noisy signal and the filtered signal using the given plotting code.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 2. ChapterΒ 5
single

single

some-alt