Implementing Eigenvectors & Eigenvalues in Python
Computing Eigenvalues and Eigenvectors
12345678910111213import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Print eigenvalues and eigenvectors print(f'Eigenvalues:\n{eigenvalues}') print(f'Eigenvectors:\n{eigenvectors}')
eig()
from the numpy
library computes the solutions to the equation:
eigenvalues
: a list of scalars Ξ» that scale eigenvectors;eigenvectors
: columns representing v (directions that don't change under transformation).
Validating Each Pair (Key Step)
1234567891011121314151617import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Verify that A @ v = Ξ» * v for each eigenpair for i in range(len(eigenvalues)): print(f'Pair {i + 1}:') Ξ» = eigenvalues[i] v = eigenvectors[:, i].reshape(-1, 1) print(f'A * v:\n{A @ v}') print(f'lambda * v:\n{Ξ» * v}')
This checks if:
Av=Ξ»vThe two sides should match closely, which confirms correctness. This is how we validate theoretical properties numerically.
Thanks for your feedback!
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Can you explain what eigenvalues and eigenvectors are in simple terms?
How do I interpret the output of the eigenvalues and eigenvectors in this example?
Why is it important to validate that \(A v = \lambda v\) for each eigenpair?
Awesome!
Completion rate improved to 1.96
Implementing Eigenvectors & Eigenvalues in Python
Swipe to show menu
Computing Eigenvalues and Eigenvectors
12345678910111213import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Print eigenvalues and eigenvectors print(f'Eigenvalues:\n{eigenvalues}') print(f'Eigenvectors:\n{eigenvectors}')
eig()
from the numpy
library computes the solutions to the equation:
eigenvalues
: a list of scalars Ξ» that scale eigenvectors;eigenvectors
: columns representing v (directions that don't change under transformation).
Validating Each Pair (Key Step)
1234567891011121314151617import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Verify that A @ v = Ξ» * v for each eigenpair for i in range(len(eigenvalues)): print(f'Pair {i + 1}:') Ξ» = eigenvalues[i] v = eigenvectors[:, i].reshape(-1, 1) print(f'A * v:\n{A @ v}') print(f'lambda * v:\n{Ξ» * v}')
This checks if:
Av=Ξ»vThe two sides should match closely, which confirms correctness. This is how we validate theoretical properties numerically.
Thanks for your feedback!