Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Implementing Eigenvectors & Eigenvalues in Python | Linear Algebra Foundations
Mathematics for Data Science

bookImplementing Eigenvectors & Eigenvalues in Python

Computing Eigenvalues and Eigenvectors

12345678910111213
import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Print eigenvalues and eigenvectors print(f'Eigenvalues:\n{eigenvalues}') print(f'Eigenvectors:\n{eigenvectors}')
copy

eig() from the numpy library computes the solutions to the equation:

Av=Ξ»vA v = \lambda v
  • eigenvalues: a list of scalars Ξ»\lambda that scale eigenvectors;
  • eigenvectors: columns representing vv (directions that don't change under transformation).

Validating Each Pair (Key Step)

1234567891011121314151617
import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Verify that A @ v = Ξ» * v for each eigenpair for i in range(len(eigenvalues)): print(f'Pair {i + 1}:') Ξ» = eigenvalues[i] v = eigenvectors[:, i].reshape(-1, 1) print(f'A * v:\n{A @ v}') print(f'lambda * v:\n{Ξ» * v}')
copy

This checks if:

Av=Ξ»vA v = \lambda v

The two sides should match closely, which confirms correctness. This is how we validate theoretical properties numerically.

question mark

What does np.linalg.eig(A) return?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 4. ChapterΒ 12

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

Suggested prompts:

Can you explain what eigenvalues and eigenvectors are in simple terms?

How do I interpret the output of the eigenvalues and eigenvectors in this example?

Why is it important to validate that \(A v = \lambda v\) for each eigenpair?

Awesome!

Completion rate improved to 1.96

bookImplementing Eigenvectors & Eigenvalues in Python

Swipe to show menu

Computing Eigenvalues and Eigenvectors

12345678910111213
import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Print eigenvalues and eigenvectors print(f'Eigenvalues:\n{eigenvalues}') print(f'Eigenvectors:\n{eigenvectors}')
copy

eig() from the numpy library computes the solutions to the equation:

Av=Ξ»vA v = \lambda v
  • eigenvalues: a list of scalars Ξ»\lambda that scale eigenvectors;
  • eigenvectors: columns representing vv (directions that don't change under transformation).

Validating Each Pair (Key Step)

1234567891011121314151617
import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Verify that A @ v = Ξ» * v for each eigenpair for i in range(len(eigenvalues)): print(f'Pair {i + 1}:') Ξ» = eigenvalues[i] v = eigenvectors[:, i].reshape(-1, 1) print(f'A * v:\n{A @ v}') print(f'lambda * v:\n{Ξ» * v}')
copy

This checks if:

Av=Ξ»vA v = \lambda v

The two sides should match closely, which confirms correctness. This is how we validate theoretical properties numerically.

question mark

What does np.linalg.eig(A) return?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 4. ChapterΒ 12
some-alt