Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Apply Validation Rules to Employee Records | Data Quality Essentials
Working with Text, Dates, and Data Cleaning in R

bookChallenge: Apply Validation Rules to Employee Records

Opgave

Swipe to start coding

Apply data validation rules to an employee records data frame to ensure data integrity.

  • Correct any ages that fall outside the range 18 to 65 by setting them to the nearest valid value.
  • Ensure all employee_id values are unique, modifying duplicates by appending a suffix.
  • Set email values that do not have a valid format (must contain both "@" and ".") to NA.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 6
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

bookChallenge: Apply Validation Rules to Employee Records

Stryg for at vise menuen

Opgave

Swipe to start coding

Apply data validation rules to an employee records data frame to ensure data integrity.

  • Correct any ages that fall outside the range 18 to 65 by setting them to the nearest valid value.
  • Ensure all employee_id values are unique, modifying duplicates by appending a suffix.
  • Set email values that do not have a valid format (must contain both "@" and ".") to NA.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 6
single

single

some-alt