Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Build a Cleaning Pipeline for Survey Data | Data Quality Essentials
Working with Text, Dates, and Data Cleaning in R

bookChallenge: Build a Cleaning Pipeline for Survey Data

Opgave

Swipe to start coding

Build a data cleaning pipeline using dplyr and custom functions to prepare the survey data frame for analysis.

  • Implement remove_outliers to set outlier values in the income column to NA.
  • Implement fix_gender to standardize and correct inconsistent gender entries.
  • Ensure the pipeline removes rows with missing or invalid ages and genders.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 8
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookChallenge: Build a Cleaning Pipeline for Survey Data

Stryg for at vise menuen

Opgave

Swipe to start coding

Build a data cleaning pipeline using dplyr and custom functions to prepare the survey data frame for analysis.

  • Implement remove_outliers to set outlier values in the income column to NA.
  • Implement fix_gender to standardize and correct inconsistent gender entries.
  • Ensure the pipeline removes rows with missing or invalid ages and genders.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 8
single

single

some-alt