Encoder - Decoder Principle
Encoder Component
The encoder component of an autoencoder is tasked with encoding the input data into a latent representation.
Utilizing a basic CNN architecture, the convolutional layers capture important image features, while pooling layers reduce the dimensionality of these extracted features. Finally, the dense layer generates latent values that represent the image encoding.
# Define the input placeholder
input_img = Input(shape=(28, 28, 1))
# Encoder
x = Conv2D(32, (2, 2), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(64, (2, 2), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# Latent space
latent_dim = 16
x = Flatten()(encoded)
latent = Dense(latent_dim, activation='sigmoid', name='latent')(x)
Decoder Component
The autoencoder's decoder component aims to reconstruct the original input from the latent representation.
Using a simple CNN architecture, the decoder applies convolution layers to process the latent features and refine their details, followed by upsampling layers to expand their spatial dimensions.
# Decoder
decoder_input = Input(shape=(latent_dim,))
x = Dense(7*7*64, activation='relu')(decoder_input)
x = Reshape((7, 7, 64))(x)
x = Conv2D(64, (2, 2), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (2, 2), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded_output = Conv2D(1, (2, 2), activation='linear', padding='same')(x)
As a result, we have an architecture that compresses the image into a lower dimension and then restores it from this compressed representation. This compression must retain the most valuable and important features of the image, allowing us to reconstruct the original image with the highest possible quality.
Tak for dine kommentarer!
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Spørg mig spørgsmål om dette emne
Opsummér dette kapitel
Vis virkelige eksempler
Awesome!
Completion rate improved to 5.26
Encoder - Decoder Principle
Stryg for at vise menuen
Encoder Component
The encoder component of an autoencoder is tasked with encoding the input data into a latent representation.
Utilizing a basic CNN architecture, the convolutional layers capture important image features, while pooling layers reduce the dimensionality of these extracted features. Finally, the dense layer generates latent values that represent the image encoding.
# Define the input placeholder
input_img = Input(shape=(28, 28, 1))
# Encoder
x = Conv2D(32, (2, 2), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(64, (2, 2), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# Latent space
latent_dim = 16
x = Flatten()(encoded)
latent = Dense(latent_dim, activation='sigmoid', name='latent')(x)
Decoder Component
The autoencoder's decoder component aims to reconstruct the original input from the latent representation.
Using a simple CNN architecture, the decoder applies convolution layers to process the latent features and refine their details, followed by upsampling layers to expand their spatial dimensions.
# Decoder
decoder_input = Input(shape=(latent_dim,))
x = Dense(7*7*64, activation='relu')(decoder_input)
x = Reshape((7, 7, 64))(x)
x = Conv2D(64, (2, 2), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (2, 2), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded_output = Conv2D(1, (2, 2), activation='linear', padding='same')(x)
As a result, we have an architecture that compresses the image into a lower dimension and then restores it from this compressed representation. This compression must retain the most valuable and important features of the image, allowing us to reconstruct the original image with the highest possible quality.
Tak for dine kommentarer!