Høj-Dimensionale Data og Forbandelsen ved Dimensionalitet
Høj-dimensionelle data har mange egenskaber eller kolonner. Når du tilføjer flere dimensioner, spredes datapunkterne længere fra hinanden, og rummet bliver mere tomt. Dette gør det vanskeligt at finde mønstre, fordi afstandene mellem punkterne mister deres betydning. Dette kaldes forbandelsen ved dimensionalitet—udfordringen ved at analysere data, når der er for mange egenskaber.
1234567891011121314151617181920212223242526272829import numpy as np import matplotlib.pyplot as plt # Generate random points in 2D np.random.seed(0) points_2d = np.random.rand(100, 2) # Generate random points in 3D points_3d = np.random.rand(100, 3) fig = plt.figure(figsize=(12, 5)) # Plot 2D points ax1 = fig.add_subplot(1, 2, 1) ax1.scatter(points_2d[:, 0], points_2d[:, 1], color='blue', alpha=0.6) ax1.set_title('100 Random Points in 2D') ax1.set_xlabel('X') ax1.set_ylabel('Y') # Plot 3D points ax2 = fig.add_subplot(1, 2, 2, projection='3d') ax2.scatter(points_3d[:, 0], points_3d[:, 1], points_3d[:, 2], color='red', alpha=0.6) ax2.set_title('100 Random Points in 3D') ax2.set_xlabel('X') ax2.set_ylabel('Y') ax2.set_zlabel('Z') plt.tight_layout() plt.show()
Tak for dine kommentarer!
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Awesome!
Completion rate improved to 8.33
Høj-Dimensionale Data og Forbandelsen ved Dimensionalitet
Stryg for at vise menuen
Høj-dimensionelle data har mange egenskaber eller kolonner. Når du tilføjer flere dimensioner, spredes datapunkterne længere fra hinanden, og rummet bliver mere tomt. Dette gør det vanskeligt at finde mønstre, fordi afstandene mellem punkterne mister deres betydning. Dette kaldes forbandelsen ved dimensionalitet—udfordringen ved at analysere data, når der er for mange egenskaber.
1234567891011121314151617181920212223242526272829import numpy as np import matplotlib.pyplot as plt # Generate random points in 2D np.random.seed(0) points_2d = np.random.rand(100, 2) # Generate random points in 3D points_3d = np.random.rand(100, 3) fig = plt.figure(figsize=(12, 5)) # Plot 2D points ax1 = fig.add_subplot(1, 2, 1) ax1.scatter(points_2d[:, 0], points_2d[:, 1], color='blue', alpha=0.6) ax1.set_title('100 Random Points in 2D') ax1.set_xlabel('X') ax1.set_ylabel('Y') # Plot 3D points ax2 = fig.add_subplot(1, 2, 2, projection='3d') ax2.scatter(points_3d[:, 0], points_3d[:, 1], points_3d[:, 2], color='red', alpha=0.6) ax2.set_title('100 Random Points in 3D') ax2.set_xlabel('X') ax2.set_ylabel('Y') ax2.set_zlabel('Z') plt.tight_layout() plt.show()
Tak for dine kommentarer!