Challenge: Using DBSCAN Clustering to Detect Outliers
Opgave
Swipe to start coding
Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:
- Specify the parameters of the DBScan algorithm: set
eps
equal to0.35
andmin_samples
equal to6
. - Fit the algorithm and provide clustering.
- Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a
-1
label.
Løsning
Var alt klart?
Tak for dine kommentarer!
Sektion 3. Kapitel 2
single
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Awesome!
Completion rate improved to 6.67
Challenge: Using DBSCAN Clustering to Detect Outliers
Stryg for at vise menuen
Opgave
Swipe to start coding
Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:
- Specify the parameters of the DBScan algorithm: set
eps
equal to0.35
andmin_samples
equal to6
. - Fit the algorithm and provide clustering.
- Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a
-1
label.
Løsning
Var alt klart?
Tak for dine kommentarer!
Awesome!
Completion rate improved to 6.67Sektion 3. Kapitel 2
single