Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Simple Solution for Scraping | Tables
Web Scraping with Python
course content

Kursusindhold

Web Scraping with Python

Web Scraping with Python

1. HTML Files and DevTools
2. Beautiful Soup
3. CSS Selectors/XPaths
4. Tables

book
Simple Solution for Scraping

The library pandas provide a quick and convenient solution for converting HTML tables to the DataFrame. The function read_html() can be useful for scraping tables from various websites without figuring out how to get the website’s HTML. You can use read_html() to work with tables whose structure is not complicated, for example, tables on Wikipedia pages.

12
import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida')
copy

In the code above, the function read_html() got all tables from Wiki about Florida. table is a list of all the tables on the page already converted to DataFrames.

With a large number of tables on the page, it can be challenging to find the one you need. To make the table selection easier, use the match parameter to select the table you want. For example:

12
import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida', match='State University System of Florida')
copy
Opgave

Swipe to start coding

Get the table from the Wikipedia page about Florida and convert it to the DataFrame.

  1. Import pandas library with the pd alias.
  2. Get the table 'Largest cities or towns in Florida' from the page.
  3. Print the DataFrame df.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 4. Kapitel 3
toggle bottom row

book
Simple Solution for Scraping

The library pandas provide a quick and convenient solution for converting HTML tables to the DataFrame. The function read_html() can be useful for scraping tables from various websites without figuring out how to get the website’s HTML. You can use read_html() to work with tables whose structure is not complicated, for example, tables on Wikipedia pages.

12
import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida')
copy

In the code above, the function read_html() got all tables from Wiki about Florida. table is a list of all the tables on the page already converted to DataFrames.

With a large number of tables on the page, it can be challenging to find the one you need. To make the table selection easier, use the match parameter to select the table you want. For example:

12
import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida', match='State University System of Florida')
copy
Opgave

Swipe to start coding

Get the table from the Wikipedia page about Florida and convert it to the DataFrame.

  1. Import pandas library with the pd alias.
  2. Get the table 'Largest cities or towns in Florida' from the page.
  3. Print the DataFrame df.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 4. Kapitel 3
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt