Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Columns Accessors | Data Frames
R Introduction: Part II

Stryg for at vise menuen

book
Columns Accessors

Since data frames have names on their columns, you should be able to extract necessary data using them.

There are several ways in R to refer to a particular column using naming. One of them is the same as in vectors and matrices: column name within square brackets (for example, data[, "col_name"]). The second way is unique for data frames - using the dollar $ sign. The syntax is data$col_name (yes, without quotation marks). For example, you can extract the column "Age" from the data frame created in the last chapter.

12345678910
# Data name <- c("Alex", "Julia", "Finn") age <- c(24, 43, 32) gender <- c("M", "F", "M") # Creating a data frame test <- data.frame(name, age, gender) # Extracting the name column using two ways test[,"name"] test$name
copy
Opgave

Swipe to start coding

Let's work with the mtcars dataset. Your tasks are:

  1. Extract the cyl column values using square brackets.
  2. Extract the disp column values using the dollar $ sign.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 3
Vi beklager, at noget gik galt. Hvad skete der?

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

book
Columns Accessors

Since data frames have names on their columns, you should be able to extract necessary data using them.

There are several ways in R to refer to a particular column using naming. One of them is the same as in vectors and matrices: column name within square brackets (for example, data[, "col_name"]). The second way is unique for data frames - using the dollar $ sign. The syntax is data$col_name (yes, without quotation marks). For example, you can extract the column "Age" from the data frame created in the last chapter.

12345678910
# Data name <- c("Alex", "Julia", "Finn") age <- c(24, 43, 32) gender <- c("M", "F", "M") # Creating a data frame test <- data.frame(name, age, gender) # Extracting the name column using two ways test[,"name"] test$name
copy
Opgave

Swipe to start coding

Let's work with the mtcars dataset. Your tasks are:

  1. Extract the cyl column values using square brackets.
  2. Extract the disp column values using the dollar $ sign.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 3
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt