Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Initializing Model Weights and Biases | PyTorch Introduction
PyTorch Essentials

Stryg for at vise menuen

book
Challenge: Initializing Model Weights and Biases

Opgave

Swipe to start coding

You are tasked with creating random tensors to initialize weights and biases for a simple neural network.

  1. Ensure reproducibility by setting a manual seed to an arbitrary number before generating the tensors.
  2. Create a 3x4 tensor filled with random values from a uniform distribution between 0 and 1 (weights for the first layer).
  3. Create a 1x4 tensor filled with zeros (biases for the first layer).
  4. Create a 4x2 tensor with random integers between -5 and 5 (weights for the second layer).

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 6

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

book
Challenge: Initializing Model Weights and Biases

Opgave

Swipe to start coding

You are tasked with creating random tensors to initialize weights and biases for a simple neural network.

  1. Ensure reproducibility by setting a manual seed to an arbitrary number before generating the tensors.
  2. Create a 3x4 tensor filled with random values from a uniform distribution between 0 and 1 (weights for the first layer).
  3. Create a 1x4 tensor filled with zeros (biases for the first layer).
  4. Create a 4x2 tensor with random integers between -5 and 5 (weights for the second layer).

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 6
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt