Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Drop Rows with Missing Data | Handling Missing and Duplicate Data
Python for Data Cleaning

bookChallenge: Drop Rows with Missing Data

When working with real-world datasets, you often encounter missing values represented as NaN (not a number). Deciding when to drop rows with missing data depends on the context and the importance of the missing information. Dropping rows is appropriate when the dataset is large enough that removing some rows will not significantly impact your analysis, or when the missing data is scattered randomly and does not represent a systematic issue. However, this approach can lead to loss of valuable information, especially if missing values are concentrated in a particular group or if the dataset is small. Always consider whether dropping rows could introduce bias or reduce the representativeness of your data.

1234567891011
import pandas as pd import numpy as np data = { "name": ["Alice", "Bob", "Charlie", "David"], "age": [25, np.nan, 30, 22], "city": ["New York", "Los Angeles", np.nan, "Chicago"] } df = pd.DataFrame(data) print(df)
copy
Opgave

Swipe to start coding

Write a function that returns a new DataFrame with all rows containing any missing values removed. The function should not modify the original DataFrame. Use only the provided parameters and variables.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 4
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Drop Rows with Missing Data

Stryg for at vise menuen

When working with real-world datasets, you often encounter missing values represented as NaN (not a number). Deciding when to drop rows with missing data depends on the context and the importance of the missing information. Dropping rows is appropriate when the dataset is large enough that removing some rows will not significantly impact your analysis, or when the missing data is scattered randomly and does not represent a systematic issue. However, this approach can lead to loss of valuable information, especially if missing values are concentrated in a particular group or if the dataset is small. Always consider whether dropping rows could introduce bias or reduce the representativeness of your data.

1234567891011
import pandas as pd import numpy as np data = { "name": ["Alice", "Bob", "Charlie", "David"], "age": [25, np.nan, 30, 22], "city": ["New York", "Los Angeles", np.nan, "Chicago"] } df = pd.DataFrame(data) print(df)
copy
Opgave

Swipe to start coding

Write a function that returns a new DataFrame with all rows containing any missing values removed. The function should not modify the original DataFrame. Use only the provided parameters and variables.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 4
single

single

some-alt