Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Impute Missing Values with Mean | Handling Missing and Duplicate Data
Python for Data Cleaning

bookChallenge: Impute Missing Values with Mean

Mean imputation is a straightforward technique for handling missing values in numerical data. You replace each missing value in a column with the mean of the non-missing values from that same column. This method is most appropriate when the data is missing at random and the distribution of values is not heavily skewed. However, mean imputation can distort the variance and relationships in your data, especially if many values are missing or if the data is not normally distributed. It is important to consider these limitations before choosing mean imputation for your data cleaning workflow.

123456789
import pandas as pd import numpy as np data = { "id": [1, 2, 3, 4, 5], "score": [85, np.nan, 78, np.nan, 92] } df = pd.DataFrame(data) print(df)
copy
Opgave

Swipe to start coding

Write a function that fills missing values in a specified numerical column of a DataFrame with the mean of that column. The function must return the modified DataFrame with all missing values in the specified column replaced by the mean of the non-missing values.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 3
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Impute Missing Values with Mean

Stryg for at vise menuen

Mean imputation is a straightforward technique for handling missing values in numerical data. You replace each missing value in a column with the mean of the non-missing values from that same column. This method is most appropriate when the data is missing at random and the distribution of values is not heavily skewed. However, mean imputation can distort the variance and relationships in your data, especially if many values are missing or if the data is not normally distributed. It is important to consider these limitations before choosing mean imputation for your data cleaning workflow.

123456789
import pandas as pd import numpy as np data = { "id": [1, 2, 3, 4, 5], "score": [85, np.nan, 78, np.nan, 92] } df = pd.DataFrame(data) print(df)
copy
Opgave

Swipe to start coding

Write a function that fills missing values in a specified numerical column of a DataFrame with the mean of that column. The function must return the modified DataFrame with all missing values in the specified column replaced by the mean of the non-missing values.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 3
single

single

some-alt