Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Standardize Categorical Values | Ensuring Data Consistency and Correctness
Python for Data Cleaning

bookChallenge: Standardize Categorical Values

When working with real-world data, you often encounter categorical values that are meant to represent the same thing but are written in different ways. For example, a survey might record responses such as Yes, yes, and YES in the same column. These inconsistencies can cause problems when you try to analyze or summarize your data, since Python and pandas treat these as distinct values. Standardizing these entries is essential to ensure your data is consistent and your results are accurate.

1234567
import pandas as pd data = { "Response": ["Yes", "no", "YES", "No", "yes", "NO", "nO", "YeS"] } df = pd.DataFrame(data) print(df)
copy
Opgave

Swipe to start coding

Write a function that standardizes all values in a specified column of a DataFrame to lowercase.

Your function must:

  • Modify the DataFrame so that every value in the given column is converted to lowercase.
  • Return the modified DataFrame.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 3
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

How can I standardize the values in the 'Response' column?

Why is it important to clean categorical data before analysis?

Can you show me how to count the number of 'Yes' and 'No' responses after standardizing?

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Standardize Categorical Values

Stryg for at vise menuen

When working with real-world data, you often encounter categorical values that are meant to represent the same thing but are written in different ways. For example, a survey might record responses such as Yes, yes, and YES in the same column. These inconsistencies can cause problems when you try to analyze or summarize your data, since Python and pandas treat these as distinct values. Standardizing these entries is essential to ensure your data is consistent and your results are accurate.

1234567
import pandas as pd data = { "Response": ["Yes", "no", "YES", "No", "yes", "NO", "nO", "YeS"] } df = pd.DataFrame(data) print(df)
copy
Opgave

Swipe to start coding

Write a function that standardizes all values in a specified column of a DataFrame to lowercase.

Your function must:

  • Modify the DataFrame so that every value in the given column is converted to lowercase.
  • Return the modified DataFrame.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 3
single

single

some-alt