Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Implement Particle Swarm Optimization | Swarm-Based Algorithms
Bio-Inspired Algorithms

bookChallenge: Implement Particle Swarm Optimization

Opgave

Swipe to start coding

You are asked to implement the core update logic for a Particle Swarm Optimization (PSO) algorithm. The goal is to find the minimum of the function f(x) = x² + 5 * sin(x) on the interval [-10, 10].

All the parameters (like inertia w, cognitive c1, and social c2) and initial lists (positions, velocities, pbest_positions, pbest_values, gbest_position, gbest_value) are already set up for you.

Your task is to fill in the main iterative process:

  1. Inside the inner for loop (for each particle i), you must first update the particle's velocity. Use the full PSO velocity update equation: w * velocities[i] + c1 * r1 * (pbest_positions[i] - positions[i]) + c2 * r2 * (gbest_position - positions[i]).
  2. Update the particle's position by adding its new velocities[i] to positions[i].
  3. After calculating the new value at positions[i], check if this new value is better than the particle's personal best (pbest_values[i]). If it is, you must update both pbest_positions[i] and pbest_values[i].
  4. After the inner loop (which updates all particles), check if the new best personal value (which you find and store in min_value) is better than the current global best (gbest_value). If it is, update both gbest_value and gbest_position.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Implement Particle Swarm Optimization

Stryg for at vise menuen

Opgave

Swipe to start coding

You are asked to implement the core update logic for a Particle Swarm Optimization (PSO) algorithm. The goal is to find the minimum of the function f(x) = x² + 5 * sin(x) on the interval [-10, 10].

All the parameters (like inertia w, cognitive c1, and social c2) and initial lists (positions, velocities, pbest_positions, pbest_values, gbest_position, gbest_value) are already set up for you.

Your task is to fill in the main iterative process:

  1. Inside the inner for loop (for each particle i), you must first update the particle's velocity. Use the full PSO velocity update equation: w * velocities[i] + c1 * r1 * (pbest_positions[i] - positions[i]) + c2 * r2 * (gbest_position - positions[i]).
  2. Update the particle's position by adding its new velocities[i] to positions[i].
  3. After calculating the new value at positions[i], check if this new value is better than the particle's personal best (pbest_values[i]). If it is, you must update both pbest_positions[i] and pbest_values[i].
  4. After the inner loop (which updates all particles), check if the new best personal value (which you find and store in min_value) is better than the current global best (gbest_value). If it is, update both gbest_value and gbest_position.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
single

single

some-alt