Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Payback Period & Profitability Scenarios | Unit Economics
Business Analytics and Decision Making with Python

bookPayback Period & Profitability Scenarios

Understanding the payback period is crucial for evaluating how quickly your business recovers its investment in acquiring a customer. The payback period is the length of time required for the cumulative net cash flows from a customer to equal the initial customer acquisition cost (CAC). In business planning, a shorter payback period means your company recoups its investment sooner, reducing risk and freeing up capital for growth. This metric helps you assess the sustainability of your business model and guides decisions on marketing spend and pricing strategies.

1234567891011121314151617181920212223242526272829
# Calculate payback period for each customer using LTV and CAC from the dataset import pandas as pd # Example customer data with CAC and LTV by month data = { "customer_id": [1, 2, 3], "CAC": [100, 150, 120], "LTV_month_1": [20, 30, 10], "LTV_month_2": [25, 25, 20], "LTV_month_3": [30, 40, 30], "LTV_month_4": [40, 60, 50], } df = pd.DataFrame(data) # Calculate cumulative LTV for each month ltv_cols = [col for col in df.columns if col.startswith("LTV_month")] df["cumulative_LTV"] = df[ltv_cols].cumsum(axis=1).values.tolist() # Calculate payback period: first month when cumulative LTV >= CAC def get_payback_month(row): for i, ltv in enumerate(row["cumulative_LTV"], start=1): if ltv >= row["CAC"]: return i return None # Payback not achieved within observed months df["payback_period_months"] = df.apply(get_payback_month, axis=1) print(df[["customer_id", "CAC", "payback_period_months"]])
copy
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
import matplotlib.pyplot as plt import numpy as np # Base parameters used in both scenarios months = np.arange(1, 13) # 12-month horizon base_cac = 100 # Baseline CAC for retention sensitivity monthly_revenue = 20 # Revenue generated per retained user per month # Scenario 1: Impact of CAC (Retention varies by CAC) # Different CAC levels with different assumed retention curves # Assumption: lower CAC implies a more engaged customer base with higher retention cac_scenarios = { 80: 0.90, # Low CAC → stronger retention 100: 0.85, # Baseline retention 120: 0.78 # High CAC → weaker retention } plt.figure(figsize=(8, 5)) for cac, retention in cac_scenarios.items(): # Compute cumulative LTV curve for 12 months cumulative_ltv = np.cumsum([ monthly_revenue * (retention ** (m - 1)) for m in months ]) # Determine payback month (if cumulative LTV reaches CAC) if np.any(cumulative_ltv >= cac): payback_month = np.argmax(cumulative_ltv >= cac) + 1 else: payback_month = None payback_text = f"{payback_month} mo" if payback_month else "None" # Plot LTV curve plt.plot(months, cumulative_ltv, label=f'CAC=${cac} (Payback: {payback_text})') plt.title('Cumulative LTV by CAC') plt.xlabel('Month') plt.ylabel('Cumulative LTV ($)') plt.legend() plt.tight_layout() plt.show() # Scenario 2: Impact of Retention (CAC is fixed) plt.figure(figsize=(8, 5)) # Different retention rates to test sensitivity retention_rates = [0.70, 0.85, 0.95] for retention in retention_rates: # Compute cumulative LTV curve cumulative_ltv = np.cumsum([ monthly_revenue * (retention ** (m - 1)) for m in months ]) # Determine payback month for fixed CAC if np.any(cumulative_ltv >= base_cac): payback_month = np.argmax(cumulative_ltv >= base_cac) + 1 else: payback_month = None payback_text = f"{payback_month} mo" if payback_month else "None" # Plot LTV curve plt.plot(months, cumulative_ltv, label=f'Retention={retention} (Payback: {payback_text})') plt.title('Cumulative LTV by Retention Rate') plt.xlabel('Month') plt.ylabel('Cumulative LTV ($)') plt.legend() plt.tight_layout() plt.show()
copy

Scenario analysis, such as adjusting CAC or customer retention rates, empowers you to anticipate how changes in business drivers impact profitability and payback periods. By modeling different outcomes, you can identify which levers most affect your business's financial health, set realistic targets, and prioritize initiatives that improve returns. This strategic approach ensures that your decisions are grounded in data, reducing uncertainty and supporting sustainable growth.

question mark

Which of the following best describes the payback period?

Select the correct answer

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 3

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

bookPayback Period & Profitability Scenarios

Stryg for at vise menuen

Understanding the payback period is crucial for evaluating how quickly your business recovers its investment in acquiring a customer. The payback period is the length of time required for the cumulative net cash flows from a customer to equal the initial customer acquisition cost (CAC). In business planning, a shorter payback period means your company recoups its investment sooner, reducing risk and freeing up capital for growth. This metric helps you assess the sustainability of your business model and guides decisions on marketing spend and pricing strategies.

1234567891011121314151617181920212223242526272829
# Calculate payback period for each customer using LTV and CAC from the dataset import pandas as pd # Example customer data with CAC and LTV by month data = { "customer_id": [1, 2, 3], "CAC": [100, 150, 120], "LTV_month_1": [20, 30, 10], "LTV_month_2": [25, 25, 20], "LTV_month_3": [30, 40, 30], "LTV_month_4": [40, 60, 50], } df = pd.DataFrame(data) # Calculate cumulative LTV for each month ltv_cols = [col for col in df.columns if col.startswith("LTV_month")] df["cumulative_LTV"] = df[ltv_cols].cumsum(axis=1).values.tolist() # Calculate payback period: first month when cumulative LTV >= CAC def get_payback_month(row): for i, ltv in enumerate(row["cumulative_LTV"], start=1): if ltv >= row["CAC"]: return i return None # Payback not achieved within observed months df["payback_period_months"] = df.apply(get_payback_month, axis=1) print(df[["customer_id", "CAC", "payback_period_months"]])
copy
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
import matplotlib.pyplot as plt import numpy as np # Base parameters used in both scenarios months = np.arange(1, 13) # 12-month horizon base_cac = 100 # Baseline CAC for retention sensitivity monthly_revenue = 20 # Revenue generated per retained user per month # Scenario 1: Impact of CAC (Retention varies by CAC) # Different CAC levels with different assumed retention curves # Assumption: lower CAC implies a more engaged customer base with higher retention cac_scenarios = { 80: 0.90, # Low CAC → stronger retention 100: 0.85, # Baseline retention 120: 0.78 # High CAC → weaker retention } plt.figure(figsize=(8, 5)) for cac, retention in cac_scenarios.items(): # Compute cumulative LTV curve for 12 months cumulative_ltv = np.cumsum([ monthly_revenue * (retention ** (m - 1)) for m in months ]) # Determine payback month (if cumulative LTV reaches CAC) if np.any(cumulative_ltv >= cac): payback_month = np.argmax(cumulative_ltv >= cac) + 1 else: payback_month = None payback_text = f"{payback_month} mo" if payback_month else "None" # Plot LTV curve plt.plot(months, cumulative_ltv, label=f'CAC=${cac} (Payback: {payback_text})') plt.title('Cumulative LTV by CAC') plt.xlabel('Month') plt.ylabel('Cumulative LTV ($)') plt.legend() plt.tight_layout() plt.show() # Scenario 2: Impact of Retention (CAC is fixed) plt.figure(figsize=(8, 5)) # Different retention rates to test sensitivity retention_rates = [0.70, 0.85, 0.95] for retention in retention_rates: # Compute cumulative LTV curve cumulative_ltv = np.cumsum([ monthly_revenue * (retention ** (m - 1)) for m in months ]) # Determine payback month for fixed CAC if np.any(cumulative_ltv >= base_cac): payback_month = np.argmax(cumulative_ltv >= base_cac) + 1 else: payback_month = None payback_text = f"{payback_month} mo" if payback_month else "None" # Plot LTV curve plt.plot(months, cumulative_ltv, label=f'Retention={retention} (Payback: {payback_text})') plt.title('Cumulative LTV by Retention Rate') plt.xlabel('Month') plt.ylabel('Cumulative LTV ($)') plt.legend() plt.tight_layout() plt.show()
copy

Scenario analysis, such as adjusting CAC or customer retention rates, empowers you to anticipate how changes in business drivers impact profitability and payback periods. By modeling different outcomes, you can identify which levers most affect your business's financial health, set realistic targets, and prioritize initiatives that improve returns. This strategic approach ensures that your decisions are grounded in data, reducing uncertainty and supporting sustainable growth.

question mark

Which of the following best describes the payback period?

Select the correct answer

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 3
some-alt