Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Boosting | Section
Tree-Based Ensemble Methods

bookChallenge: Boosting

Opgave

Swipe to start coding

Your task is to train and evaluate two boosting models — AdaBoost and Gradient Boosting — on the Breast Cancer dataset.

Follow these steps:

  1. Load the dataset using load_breast_cancer() from sklearn.datasets.
  2. Split the data into training and testing sets (test_size=0.3, random_state=42).
  3. Train:
    • An AdaBoostClassifier with:
      • base_estimator=DecisionTreeClassifier(max_depth=1)
      • n_estimators=50, learning_rate=0.8
    • A GradientBoostingClassifier with:
      • n_estimators=100, learning_rate=0.1, max_depth=3.
  4. Evaluate both models on the test data using accuracy_score.
  5. Print both accuracies.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 11
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

bookChallenge: Boosting

Stryg for at vise menuen

Opgave

Swipe to start coding

Your task is to train and evaluate two boosting models — AdaBoost and Gradient Boosting — on the Breast Cancer dataset.

Follow these steps:

  1. Load the dataset using load_breast_cancer() from sklearn.datasets.
  2. Split the data into training and testing sets (test_size=0.3, random_state=42).
  3. Train:
    • An AdaBoostClassifier with:
      • base_estimator=DecisionTreeClassifier(max_depth=1)
      • n_estimators=50, learning_rate=0.8
    • A GradientBoostingClassifier with:
      • n_estimators=100, learning_rate=0.1, max_depth=3.
  4. Evaluate both models on the test data using accuracy_score.
  5. Print both accuracies.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 11
single

single

some-alt