Challenge: Stacking Model
Opgave
Swipe to start coding
In this challenge, you'll build a Stacking Classifier that combines different base models to improve predictive performance.
Your task:
- Load the Breast Cancer dataset using
load_breast_cancer()fromsklearn.datasets. - Split the dataset into training and testing sets (
test_size=0.3,random_state=42). - Create a stacking ensemble with:
- Base estimators:
- Decision Tree (
DecisionTreeClassifier(max_depth=3, random_state=42)) - Support Vector Classifier (
SVC(probability=True, random_state=42))
- Decision Tree (
- Final estimator:
- Logistic Regression (
LogisticRegression(random_state=42))
- Logistic Regression (
- Base estimators:
- Train your model on the training data.
- Evaluate the model on the test data using accuracy score.
- Print the mode's accuracy.
Løsning
Var alt klart?
Tak for dine kommentarer!
Sektion 1. Kapitel 14
single
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Fantastisk!
Completion rate forbedret til 7.14
Challenge: Stacking Model
Stryg for at vise menuen
Opgave
Swipe to start coding
In this challenge, you'll build a Stacking Classifier that combines different base models to improve predictive performance.
Your task:
- Load the Breast Cancer dataset using
load_breast_cancer()fromsklearn.datasets. - Split the dataset into training and testing sets (
test_size=0.3,random_state=42). - Create a stacking ensemble with:
- Base estimators:
- Decision Tree (
DecisionTreeClassifier(max_depth=3, random_state=42)) - Support Vector Classifier (
SVC(probability=True, random_state=42))
- Decision Tree (
- Final estimator:
- Logistic Regression (
LogisticRegression(random_state=42))
- Logistic Regression (
- Base estimators:
- Train your model on the training data.
- Evaluate the model on the test data using accuracy score.
- Print the mode's accuracy.
Løsning
Var alt klart?
Tak for dine kommentarer!
Sektion 1. Kapitel 14
single