Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Comparing Experimental Groups | Statistical Analysis and Automation
Python for Researchers

bookChallenge: Comparing Experimental Groups

Opgave

Swipe to start coding

Implement a function that takes a DataFrame with columns 'group' and 'outcome', and performs an independent t-test comparing the 'outcome' between groups 'A' and 'B'.

  • Extract the 'outcome' values for group 'A' and group 'B' from the DataFrame.
  • Use scipy.stats.ttest_ind to perform an independent t-test between the two groups.
  • Return the t-statistic and p-value as a tuple.
  • Print an interpretation stating whether the difference is statistically significant at p < 0.05.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 3
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookChallenge: Comparing Experimental Groups

Stryg for at vise menuen

Opgave

Swipe to start coding

Implement a function that takes a DataFrame with columns 'group' and 'outcome', and performs an independent t-test comparing the 'outcome' between groups 'A' and 'B'.

  • Extract the 'outcome' values for group 'A' and group 'B' from the DataFrame.
  • Use scipy.stats.ttest_ind to perform an independent t-test between the two groups.
  • Return the t-statistic and p-value as a tuple.
  • Print an interpretation stating whether the difference is statistically significant at p < 0.05.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 3
single

single

some-alt