Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Egyptian Fraction Problem | Greedy Algorithms: Overview and Examples
Greedy Algorithms using Python

Stryg for at vise menuen

book
Egyptian Fraction Problem

Ancient Egyptians represented each positive fraction as the sum of unique unit fractions. For example, 7/15 = 1/3 + 1/8 + 1/120, or 2/3 = 1/2 + 1/6, or 1/7 = 1/7.

So, your goal is to find such a representation for the number n/m, m, n>0.

That can be reached by using the Greedy Approach. Each time, try to “bite” the number as big as possible to reduce the current value. Let’s look at the 7/15:

  • N = 7/15 >= 1/3 – this is the maximum unit fraction we can reach, add it to the answer.

  • Now, update the number we’re solving problem for: N = 7/15 – 1/3 = 2/15.

  • N = 2/15 >= 1/8 – next maximum unit fraction, add to the answer.

  • Update N: N = 2/15 – 1/8 = 1/120.

  • N = 1/120 >= 1/120 - add to the answer.

  • Update N = 0 -> stop the algorithm.

So, to sum up:

  1. Check if the current N == 0. If it is, stop the algorithm.

  2. Find the biggest unit fraction less than N and add it to the ans

  3. Update value of N by reducing.

The answer is an array f of numbers f[0], f[1], ... , f[t], where f[i] is a divider for fraction 1/f[i]. For our example, answer is [3, 8, 120].

How to find the biggest possible unit fraction It can be easily done for N = n/m by calculating k = math.ceil(m/n). Greater values of k do not give the maximum unit fraction (since, for example, 1/k > 1/(k+1)).

Opgave

Swipe to start coding

Add some code to the function and test it.

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 5

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

book
Egyptian Fraction Problem

Ancient Egyptians represented each positive fraction as the sum of unique unit fractions. For example, 7/15 = 1/3 + 1/8 + 1/120, or 2/3 = 1/2 + 1/6, or 1/7 = 1/7.

So, your goal is to find such a representation for the number n/m, m, n>0.

That can be reached by using the Greedy Approach. Each time, try to “bite” the number as big as possible to reduce the current value. Let’s look at the 7/15:

  • N = 7/15 >= 1/3 – this is the maximum unit fraction we can reach, add it to the answer.

  • Now, update the number we’re solving problem for: N = 7/15 – 1/3 = 2/15.

  • N = 2/15 >= 1/8 – next maximum unit fraction, add to the answer.

  • Update N: N = 2/15 – 1/8 = 1/120.

  • N = 1/120 >= 1/120 - add to the answer.

  • Update N = 0 -> stop the algorithm.

So, to sum up:

  1. Check if the current N == 0. If it is, stop the algorithm.

  2. Find the biggest unit fraction less than N and add it to the ans

  3. Update value of N by reducing.

The answer is an array f of numbers f[0], f[1], ... , f[t], where f[i] is a divider for fraction 1/f[i]. For our example, answer is [3, 8, 120].

How to find the biggest possible unit fraction It can be easily done for N = n/m by calculating k = math.ceil(m/n). Greater values of k do not give the maximum unit fraction (since, for example, 1/k > 1/(k+1)).

Opgave

Swipe to start coding

Add some code to the function and test it.

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 5
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt