Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Find Similar Drug-like Molecules | Similarity, Clustering and Drug Discovery
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Chemoinformatics

bookChallenge: Find Similar Drug-like Molecules

Opgave

Swipe to start coding

Write a function to identify molecules from a list of candidate SMILES strings that are similar to a given reference SMILES, using Tanimoto similarity.

  • Parse the reference_smiles string into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • For each SMILES in candidate_smiles_list, parse it into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • Compute the Tanimoto similarity between the reference fingerprint and each candidate fingerprint.
  • Return a list of SMILES strings for those candidates with similarity strictly greater than 0.7.

Before running this code or the tests, you must install the RDKit library in your environment. If you control the environment, use 'conda install -c conda-forge rdkit' or 'pip install rdkit'. If you do not control the environment, contact the platform support or check their documentation for available packages.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 2
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

bookChallenge: Find Similar Drug-like Molecules

Stryg for at vise menuen

Opgave

Swipe to start coding

Write a function to identify molecules from a list of candidate SMILES strings that are similar to a given reference SMILES, using Tanimoto similarity.

  • Parse the reference_smiles string into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • For each SMILES in candidate_smiles_list, parse it into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • Compute the Tanimoto similarity between the reference fingerprint and each candidate fingerprint.
  • Return a list of SMILES strings for those candidates with similarity strictly greater than 0.7.

Before running this code or the tests, you must install the RDKit library in your environment. If you control the environment, use 'conda install -c conda-forge rdkit' or 'pip install rdkit'. If you do not control the environment, contact the platform support or check their documentation for available packages.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 2
single

single

some-alt