Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Cluster a Compound Library | Similarity, Clustering and Drug Discovery
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Chemoinformatics

bookChallenge: Cluster a Compound Library

Opgave

Swipe to start coding

Write a Python function using RDKit that takes a list of SMILES strings and groups them into clusters based on pairwise Tanimoto similarity. Each cluster should contain molecules where every member has a Tanimoto similarity above 0.6 with at least one other member in the cluster.

  • Parse each SMILES string into an RDKit molecule.
  • Generate Morgan fingerprints for each molecule.
  • Compare fingerprints pairwise using Tanimoto similarity.
  • Group molecules so that each cluster contains molecules with at least one similarity above 0.6 to another member.
  • Return a list of clusters, where each cluster is a list of SMILES strings.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 4
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Can you explain this in simpler terms?

What are the main benefits or drawbacks?

Can you give me a real-world example?

close

bookChallenge: Cluster a Compound Library

Stryg for at vise menuen

Opgave

Swipe to start coding

Write a Python function using RDKit that takes a list of SMILES strings and groups them into clusters based on pairwise Tanimoto similarity. Each cluster should contain molecules where every member has a Tanimoto similarity above 0.6 with at least one other member in the cluster.

  • Parse each SMILES string into an RDKit molecule.
  • Generate Morgan fingerprints for each molecule.
  • Compare fingerprints pairwise using Tanimoto similarity.
  • Group molecules so that each cluster contains molecules with at least one similarity above 0.6 to another member.
  • Return a list of clusters, where each cluster is a list of SMILES strings.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 4
single

single

some-alt