Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Build a Simple QSAR Model | Similarity, Clustering and Drug Discovery
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Chemoinformatics

bookChallenge: Build a Simple QSAR Model

Opgave

Swipe to start coding

Write a Python script that uses RDKit to compute a set of molecular descriptors for a list of SMILES strings, and fits a linear regression model using scikit-learn to predict a property value for each molecule.

  • Use the compute_descriptors function to calculate molecular weight, logP, number of hydrogen bond donors, and number of hydrogen bond acceptors for each molecule.
  • Use the build_qsar_model function to fit a linear regression model using the computed descriptors as features and the provided property values as targets.
  • Ensure that molecules with invalid or unparseable SMILES strings are excluded from the regression model.

Note: Make sure the RDKit library is installed in your Python environment before running this code. You can install RDKit using conda with conda install -c conda-forge rdkit or another compatible method for your system.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 6
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

bookChallenge: Build a Simple QSAR Model

Stryg for at vise menuen

Opgave

Swipe to start coding

Write a Python script that uses RDKit to compute a set of molecular descriptors for a list of SMILES strings, and fits a linear regression model using scikit-learn to predict a property value for each molecule.

  • Use the compute_descriptors function to calculate molecular weight, logP, number of hydrogen bond donors, and number of hydrogen bond acceptors for each molecule.
  • Use the build_qsar_model function to fit a linear regression model using the computed descriptors as features and the provided property values as targets.
  • Ensure that molecules with invalid or unparseable SMILES strings are excluded from the regression model.

Note: Make sure the RDKit library is installed in your Python environment before running this code. You can install RDKit using conda with conda install -c conda-forge rdkit or another compatible method for your system.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 6
single

single

some-alt