Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Function array() | Getting Started with NumPy
NumPy in a Nutshell

Stryg for at vise menuen

book
Function array()

In fact, there are various functions in NumPy for creating arrays. Now, we'll explore one of the most commonly used ones, namely np.array(). Below, you'll find an example of how to use this function:

12345678
# Importing NumPy import numpy as np # Creating array arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr)
copy

Let's now determine the type of object that this function creates. We can do this using the well-known function type().

Note

The type() function takes an object of any type and returns its type. The argument can indeed be of any type: number, string, list, dictionary, tuple, function, class, module, etc.

12345678
import numpy as np arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr) # Displaying the type of created array print(type(arr))
copy

We can see the type of the created array is ndarray. But what does that mean? ndarray - This object is a multidimensional homogeneous array with a predetermined number of elements.

Now it's time to practice!

Opgave

Swipe to start coding

  1. You have to create two NumPy arrays. The first one should look like this: [65, 2, 89, 5, 0, 1] and the second one should look like this: [1, 2, 3].
  2. Display these arrays on the screen.
  3. Display the type of these arrays on the screen.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 2
Vi beklager, at noget gik galt. Hvad skete der?

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

book
Function array()

In fact, there are various functions in NumPy for creating arrays. Now, we'll explore one of the most commonly used ones, namely np.array(). Below, you'll find an example of how to use this function:

12345678
# Importing NumPy import numpy as np # Creating array arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr)
copy

Let's now determine the type of object that this function creates. We can do this using the well-known function type().

Note

The type() function takes an object of any type and returns its type. The argument can indeed be of any type: number, string, list, dictionary, tuple, function, class, module, etc.

12345678
import numpy as np arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr) # Displaying the type of created array print(type(arr))
copy

We can see the type of the created array is ndarray. But what does that mean? ndarray - This object is a multidimensional homogeneous array with a predetermined number of elements.

Now it's time to practice!

Opgave

Swipe to start coding

  1. You have to create two NumPy arrays. The first one should look like this: [65, 2, 89, 5, 0, 1] and the second one should look like this: [1, 2, 3].
  2. Display these arrays on the screen.
  3. Display the type of these arrays on the screen.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 2
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt