Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Solving Nonlinear Equations | Optimization and Root Finding
Introduction to SciPy

bookChallenge: Solving Nonlinear Equations

In many scientific and engineering applications, you often encounter nonlinear equations that cannot be solved analytically and require numerical methods. The scipy.optimize module provides powerful algorithms to find the roots of such equations, enabling you to model and analyze real-world systems. In this challenge, you will apply your understanding of root-finding by solving a nonlinear equation that represents a physical process using scipy.optimize.root.

Opgave

Swipe to start coding

Solve the nonlinear equation x^3 - 2x^2 + x - 1 = 0 to model a physical process. Use the provided physical_process_equation function for the equation.

  • Use scipy.optimize.root to numerically find a root of the equation, starting from an initial guess of 2.0.
  • Return the root value as a float from the solve_nonlinear_equation function.

Remember to extract the root from the result object using .x[0] and convert it to a float before returning. Make sure your function returns a float, not an array.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 4.17

bookChallenge: Solving Nonlinear Equations

Stryg for at vise menuen

In many scientific and engineering applications, you often encounter nonlinear equations that cannot be solved analytically and require numerical methods. The scipy.optimize module provides powerful algorithms to find the roots of such equations, enabling you to model and analyze real-world systems. In this challenge, you will apply your understanding of root-finding by solving a nonlinear equation that represents a physical process using scipy.optimize.root.

Opgave

Swipe to start coding

Solve the nonlinear equation x^3 - 2x^2 + x - 1 = 0 to model a physical process. Use the provided physical_process_equation function for the equation.

  • Use scipy.optimize.root to numerically find a root of the equation, starting from an initial guess of 2.0.
  • Return the root value as a float from the solve_nonlinear_equation function.

Remember to extract the root from the result object using .x[0] and convert it to a float before returning. Make sure your function returns a float, not an array.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
single

single

some-alt