Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Visualize and Highlight Outliers | Automation and Fraud Detection in Banking
Python for Bankers

bookChallenge: Visualize and Highlight Outliers

Opgave

Swipe to start coding

Given a DataFrame containing transaction data, your task is to generate two plots: a scatter plot of transaction amounts over time, and a boxplot of transaction amounts grouped by customer. Outliers in the scatter plot should be highlighted in red.

  • Generate a scatter plot of the Amount column versus the Date column.
  • Use the interquartile range (IQR) method to identify outliers in the Amount column.
  • Highlight outlier points in red on the scatter plot.
  • Generate a boxplot of transaction amounts, grouped by the CustomerID column.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

bookChallenge: Visualize and Highlight Outliers

Stryg for at vise menuen

Opgave

Swipe to start coding

Given a DataFrame containing transaction data, your task is to generate two plots: a scatter plot of transaction amounts over time, and a boxplot of transaction amounts grouped by customer. Outliers in the scatter plot should be highlighted in red.

  • Generate a scatter plot of the Amount column versus the Date column.
  • Use the interquartile range (IQR) method to identify outliers in the Amount column.
  • Highlight outlier points in red on the scatter plot.
  • Generate a boxplot of transaction amounts, grouped by the CustomerID column.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
single

single

some-alt