Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Group Data 2.0 | Explore Dataset
Introduction to Python for Data Analysis
course content

Kursusindhold

Introduction to Python for Data Analysis

Introduction to Python for Data Analysis

1. Introduction to Python 1/2
2. Introduction to Python 2/2
3. Explore Dataset
4. Becoming an Analyst

book
Group Data 2.0

Let's imagine the situation where you want to group by job_title, but then you want to group by experience_level , for example.

Here, everything is so simple you need just put several columns in needed order to groupby function:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df.groupby(['job_title', 'experience_level']).mean() print(df)
copy

Look at the output.

output

By the way, if you don't want to group the whole table, you can specify the name of columns for which we should apply grouping. For instance, look at the previous code. If we want to calculate the mean value only for the 'salary' column, we specify needed columns, but do not forget about columns that should be grouped:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df[['salary','job_title', 'experience_level']].groupby(['job_title', 'experience_level']).mean() print(df)
copy

Be careful; if you want to work with several columns, you have to put them into [[]] (look at the example).

Look at the result:

result

Opgave

Swipe to start coding

Your task here is to work with the known dataset and count amount of users for each plan depending on the status of their trial. To do it, follow the algorithm:

  1. Group by 'plan' column, then by 'trial' column, using only three columns: 'user_id', 'plan', 'trial'. Apply the count() function.
  2. Print the df using only print() function.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 9
toggle bottom row

book
Group Data 2.0

Let's imagine the situation where you want to group by job_title, but then you want to group by experience_level , for example.

Here, everything is so simple you need just put several columns in needed order to groupby function:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df.groupby(['job_title', 'experience_level']).mean() print(df)
copy

Look at the output.

output

By the way, if you don't want to group the whole table, you can specify the name of columns for which we should apply grouping. For instance, look at the previous code. If we want to calculate the mean value only for the 'salary' column, we specify needed columns, but do not forget about columns that should be grouped:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df[['salary','job_title', 'experience_level']].groupby(['job_title', 'experience_level']).mean() print(df)
copy

Be careful; if you want to work with several columns, you have to put them into [[]] (look at the example).

Look at the result:

result

Opgave

Swipe to start coding

Your task here is to work with the known dataset and count amount of users for each plan depending on the status of their trial. To do it, follow the algorithm:

  1. Group by 'plan' column, then by 'trial' column, using only three columns: 'user_id', 'plan', 'trial'. Apply the count() function.
  2. Print the df using only print() function.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 9
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt