Matrixoperationer i Python
1. Addition og subtraktion
To matricer A og B med samme dimensioner kan lægges sammen:
123456789import numpy as np A = np.array([[1, 2], [5, 6]]) B = np.array([[3, 4], [7, 8]]) C = A + B print(f'C:\n{C}') # C = [[4, 6], [12, 14]]
2. Regler for multiplikation
Matrixmultiplikation er ikke elementvis.
Regel: Hvis A har dimension (n,m) og B har dimension (m,l), så får resultatet dimensionen (n,l).
1234567891011121314151617181920import numpy as np # Example random matrix 3x2 A = np.array([[1, 2], [3, 4], [5, 6]]) print(f'A:\n{A}') # Example random matrix 2x4 B = np.array([[11, 12, 13, 14], [15, 16, 17, 18]]) print(f'B:\n{B}') # product shape (3, 4) product = np.dot(A, B) print(f'np.dot(A, B):\n{product}') # or equivalently product = A @ B print(f'A @ B:\n{product}')
3. Transponering
Transponering bytter rækker og kolonner.
Generel regel: hvis A er (n×m), så er AT (m×n).
1234567import numpy as np A = np.array([[1, 2, 3], [4, 5, 6]]) A_T = A.T # Transpose of A print(f'A_T:\n{A_T}')
4. Invers af en matrix
En matrix A har en invers A−1 hvis:
A⋅A−1=IHvor I er identitetsmatricen.
Ikke alle matricer har en invers. En matrix skal være kvadratisk og have fuld rang.
12345678910import numpy as np A = np.array([[1, 2], [3, 4]]) A_inv = np.linalg.inv(A) # Inverse of A print(f'A_inv:\n{A_inv}') I = np.eye(2) # Identity matrix 2x2 print(f'A x A_inv = I:\n{np.allclose(A @ A_inv, I)}') # Check if product equals identity
Tak for dine kommentarer!
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Awesome!
Completion rate improved to 1.96
Matrixoperationer i Python
Stryg for at vise menuen
1. Addition og subtraktion
To matricer A og B med samme dimensioner kan lægges sammen:
123456789import numpy as np A = np.array([[1, 2], [5, 6]]) B = np.array([[3, 4], [7, 8]]) C = A + B print(f'C:\n{C}') # C = [[4, 6], [12, 14]]
2. Regler for multiplikation
Matrixmultiplikation er ikke elementvis.
Regel: Hvis A har dimension (n,m) og B har dimension (m,l), så får resultatet dimensionen (n,l).
1234567891011121314151617181920import numpy as np # Example random matrix 3x2 A = np.array([[1, 2], [3, 4], [5, 6]]) print(f'A:\n{A}') # Example random matrix 2x4 B = np.array([[11, 12, 13, 14], [15, 16, 17, 18]]) print(f'B:\n{B}') # product shape (3, 4) product = np.dot(A, B) print(f'np.dot(A, B):\n{product}') # or equivalently product = A @ B print(f'A @ B:\n{product}')
3. Transponering
Transponering bytter rækker og kolonner.
Generel regel: hvis A er (n×m), så er AT (m×n).
1234567import numpy as np A = np.array([[1, 2, 3], [4, 5, 6]]) A_T = A.T # Transpose of A print(f'A_T:\n{A_T}')
4. Invers af en matrix
En matrix A har en invers A−1 hvis:
A⋅A−1=IHvor I er identitetsmatricen.
Ikke alle matricer har en invers. En matrix skal være kvadratisk og have fuld rang.
12345678910import numpy as np A = np.array([[1, 2], [3, 4]]) A_inv = np.linalg.inv(A) # Inverse of A print(f'A_inv:\n{A_inv}') I = np.eye(2) # Identity matrix 2x2 print(f'A x A_inv = I:\n{np.allclose(A @ A_inv, I)}') # Check if product equals identity
Tak for dine kommentarer!