Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Automate Portfolio Metrics Calculation | Advanced Analysis and Automation for Investors
Python for Investors

bookChallenge: Automate Portfolio Metrics Calculation

Opgave

Swipe to start coding

You are given a DataFrame of daily closing prices for several assets and a list of portfolio weights. Your task is to automate the calculation of three key portfolio metrics:

  • Calculate the expected annual return of the portfolio (assume 252 trading days in a year);
  • Calculate the annualized volatility (standard deviation) of the portfolio;
  • Calculate the Sharpe Ratio of the portfolio (assume the risk-free rate is 0).

Implement the function calculate_portfolio_metrics(prices_df, weights) to return a dictionary with keys 'expected_annual_return', 'annual_volatility', and 'sharpe_ratio', each mapped to the corresponding float value.

Use only the allowed libraries. The function will be tested with different price data and weights.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 3
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

bookChallenge: Automate Portfolio Metrics Calculation

Stryg for at vise menuen

Opgave

Swipe to start coding

You are given a DataFrame of daily closing prices for several assets and a list of portfolio weights. Your task is to automate the calculation of three key portfolio metrics:

  • Calculate the expected annual return of the portfolio (assume 252 trading days in a year);
  • Calculate the annualized volatility (standard deviation) of the portfolio;
  • Calculate the Sharpe Ratio of the portfolio (assume the risk-free rate is 0).

Implement the function calculate_portfolio_metrics(prices_df, weights) to return a dictionary with keys 'expected_annual_return', 'annual_volatility', and 'sharpe_ratio', each mapped to the corresponding float value.

Use only the allowed libraries. The function will be tested with different price data and weights.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 3
single

single

some-alt