Reading and Visualizing Data
The first thing to start with is reading the data. When working with time series, the rules of the game do not change - you can still use pandas to get data from csv files.
In the files, let's say you have a Date column that contains dates in str type. For further time series analysis, you must turn the str type into a datetime. This is implemented using the pandas function to_datetime()
Let's take the dataset air_quality_no2_long.csv as an example:
dataset = pd.read_csv("daily-total-female-births.csv")
Next, we convert the data type in the Date column from str to datetime:
dataset["Date"] = pd.to_datetime(dataset["Date"])
You can also do this immediately when reading the dataset:
dataset = pd.read_csv("daily-total-female-births.csv", parse_dates=["Date"])
Now we can plot our dataset:
fig, ax = plt.subplots(figsize=(11, 9))
ax.plot(dataset["Date"], dataset["Births"])
ax.set_xlabel("Datetime")
ax.set_ylabel("Births")
plt.show()
Swipe to start coding
Read and visualize the AirPassengers.csv dataset.
- Import
matplotlib.pyplotasplt. - Read the
csvfile and save it within thedatavariable. - Convert
"Month"intodatetimetype. - Initialize a line plot with the
"Month"column ofdataon the x-axis and"#Passengers"on the y-axis. - Set labels on an axis and display the plot:
"Month"on the x-axis;"Passengers"on the y-axis.
Løsning
Tak for dine kommentarer!
single
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Opsummér dette kapitel
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 3.85
Reading and Visualizing Data
Stryg for at vise menuen
The first thing to start with is reading the data. When working with time series, the rules of the game do not change - you can still use pandas to get data from csv files.
In the files, let's say you have a Date column that contains dates in str type. For further time series analysis, you must turn the str type into a datetime. This is implemented using the pandas function to_datetime()
Let's take the dataset air_quality_no2_long.csv as an example:
dataset = pd.read_csv("daily-total-female-births.csv")
Next, we convert the data type in the Date column from str to datetime:
dataset["Date"] = pd.to_datetime(dataset["Date"])
You can also do this immediately when reading the dataset:
dataset = pd.read_csv("daily-total-female-births.csv", parse_dates=["Date"])
Now we can plot our dataset:
fig, ax = plt.subplots(figsize=(11, 9))
ax.plot(dataset["Date"], dataset["Births"])
ax.set_xlabel("Datetime")
ax.set_ylabel("Births")
plt.show()
Swipe to start coding
Read and visualize the AirPassengers.csv dataset.
- Import
matplotlib.pyplotasplt. - Read the
csvfile and save it within thedatavariable. - Convert
"Month"intodatetimetype. - Initialize a line plot with the
"Month"column ofdataon the x-axis and"#Passengers"on the y-axis. - Set labels on an axis and display the plot:
"Month"on the x-axis;"Passengers"on the y-axis.
Løsning
Tak for dine kommentarer!
single