Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære LabelEncoder | Preprocessing Data with Scikit-learn
ML Introduction with scikit-learn

book
LabelEncoder

The OrdinalEncoder and OneHotEncoder are typically used to encode features (the X variable). However, the target variable (y) can also be categorical.

import pandas as pd

# Load the data and assign X, y variables
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/adult_edu.csv')
y = df['income'] # Income is a target in this dataset
X = df.drop('income', axis=1)

print(y)
print('All values: ', y.unique())
123456789
import pandas as pd # Load the data and assign X, y variables df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/adult_edu.csv') y = df['income'] # Income is a target in this dataset X = df.drop('income', axis=1) print(y) print('All values: ', y.unique())
copy

The LabelEncoder is used to encode the target, regardless of whether it is nominal or ordinal.

ML models do not consider the order of the target, allowing it to be encoded as any numerical values. LabelEncoder encodes the target to numbers 0, 1, ... .

import pandas as pd
from sklearn.preprocessing import LabelEncoder

# Load the data and assign X, y variables
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/adult_edu.csv')
y = df['income'] # Income is a target in this dataset
X = df.drop('income', axis=1)
# Initialize a LabelEncoder object and encode the y variable
label_enc = LabelEncoder()
y = label_enc.fit_transform(y)
print(y)
# Decode the y variable back
y_decoded = label_enc.inverse_transform(y)
print(y_decoded)
1234567891011121314
import pandas as pd from sklearn.preprocessing import LabelEncoder # Load the data and assign X, y variables df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/adult_edu.csv') y = df['income'] # Income is a target in this dataset X = df.drop('income', axis=1) # Initialize a LabelEncoder object and encode the y variable label_enc = LabelEncoder() y = label_enc.fit_transform(y) print(y) # Decode the y variable back y_decoded = label_enc.inverse_transform(y) print(y_decoded)
copy

The code above encodes the target using LabelEncoder and then uses the .inverse_transform() method to convert it back to the original representation.

question mark

Choose the correct statement.

Select the correct answer

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 7

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

some-alt