Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Evaluating the Model with Cross-Validation | Modeling
ML Introduction with scikit-learn

Stryg for at vise menuen

book
Challenge: Evaluating the Model with Cross-Validation

In this challenge, you will build and evaluate a model using both train-test evaluation and cross-validation. The data is an already preprocessed penguins dataset.

Here are some of the functions you will use:

Opgave

Swipe to start coding

Your task is to create a 4-nearest neighbors classifier and first evaluate its performance using the cross-validation score. Then split the data into train-test sets, train the model on the training set, and evaluate its performance on the test set.

  1. Initialize a KNeighborsClassifier with 4 neighbors.
  2. Calculate the cross-validation scores of this model with the number of folds set to 3. You can pass an untrained model to a cross_val_score() function.
  3. Use a suitable function to split X, y.
  4. Train the model using the training set.
  5. Evaluate the model using the test set.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 4. Kapitel 5
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 3.13

book
Challenge: Evaluating the Model with Cross-Validation

In this challenge, you will build and evaluate a model using both train-test evaluation and cross-validation. The data is an already preprocessed penguins dataset.

Here are some of the functions you will use:

Opgave

Swipe to start coding

Your task is to create a 4-nearest neighbors classifier and first evaluate its performance using the cross-validation score. Then split the data into train-test sets, train the model on the training set, and evaluate its performance on the test set.

  1. Initialize a KNeighborsClassifier with 4 neighbors.
  2. Calculate the cross-validation scores of this model with the number of folds set to 3. You can pass an untrained model to a cross_val_score() function.
  3. Use a suitable function to split X, y.
  4. Train the model using the training set.
  5. Evaluate the model using the test set.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

close

Awesome!

Completion rate improved to 3.13

Stryg for at vise menuen

some-alt