Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Choosing the Best K Value. | k-NN Classifier
Classification with Python

Stryg for at vise menuen

book
Challenge: Choosing the Best K Value.

As shown in the previous chapters, the model makes different predictions for different k(neighbors number) values.
When we build a model, we want to choose the k that will lead to the best performance. And in the previous chapter, we learned how to measure performance using cross-validation.
Running a loop and calculating cross-validation scores for some range of k values to choose the highest sounds like a no-brainer. And that's the most frequently used approach. sklearn has a neat class for that task.

The param_grid parameter takes a dictionary with parameter names as keys and a list of items to go through as a list. For example, to try values 1-99 for n_neighbors, you would use:

python

The .fit(X, y) method leads the GridSearchCV object to find the best parameters from param_grid and re-train the model with the best parameters using the whole set.
You can then get the highest score using the .best_score_ attribute and predict new values using the .predict() method.

Opgave

Swipe to start coding

  1. Import the GridSearchCV class.
  2. Scale the X using StandardScaler.
  3. Look for the best value of n_neighbors among [3, 9, 18, 27].
  4. Initialize and train a GridSearchCV object with 4 folds of cross-validation.
  5. Print the score of the best model.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 7
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 3.57

book
Challenge: Choosing the Best K Value.

As shown in the previous chapters, the model makes different predictions for different k(neighbors number) values.
When we build a model, we want to choose the k that will lead to the best performance. And in the previous chapter, we learned how to measure performance using cross-validation.
Running a loop and calculating cross-validation scores for some range of k values to choose the highest sounds like a no-brainer. And that's the most frequently used approach. sklearn has a neat class for that task.

The param_grid parameter takes a dictionary with parameter names as keys and a list of items to go through as a list. For example, to try values 1-99 for n_neighbors, you would use:

python

The .fit(X, y) method leads the GridSearchCV object to find the best parameters from param_grid and re-train the model with the best parameters using the whole set.
You can then get the highest score using the .best_score_ attribute and predict new values using the .predict() method.

Opgave

Swipe to start coding

  1. Import the GridSearchCV class.
  2. Scale the X using StandardScaler.
  3. Look for the best value of n_neighbors among [3, 9, 18, 27].
  4. Initialize and train a GridSearchCV object with 4 folds of cross-validation.
  5. Print the score of the best model.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

close

Awesome!

Completion rate improved to 3.57

Stryg for at vise menuen

some-alt