3-variable Lineplot
With the help of the seaborn
, we can view the dynamics of the population, for example, relative to each season during 10 years by adding the third variable to our lineplot.
To initialize a lineplot based on the pandas
DataFrame, you need to input at least 4 parameters: x
, y
(columns-markers for the plot), hue
(the third variable), and data
(the DataFrame containing the data).
Look at the code below!
12345678910111213# Importing libraries needed import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c5b4ea8f-8a30-439f-9625-ddf2effbd9ac/example5.csv') # Creating the 3-variable lineplot sns.lineplot(x = 'x', y = 'y', hue = 'gender', data=df) # Showing the plot plt.show()
Swipe to start coding
- Import the
seaborn
withsns
alias. - Import the
matplotlib.pyplot
withplt
alias. - Import the
pandas
withpd
alias. - Read the file using
df
variable. - Create a 3-variable lineplot using
'year'
column for the x-value and'population'
column for the y-value and'season'
for the hue-value. - Show the plot.
Løsning
Tak for dine kommentarer!
single
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Awesome!
Completion rate improved to 5.88Awesome!
Completion rate improved to 5.88
3-variable Lineplot
With the help of the seaborn
, we can view the dynamics of the population, for example, relative to each season during 10 years by adding the third variable to our lineplot.
To initialize a lineplot based on the pandas
DataFrame, you need to input at least 4 parameters: x
, y
(columns-markers for the plot), hue
(the third variable), and data
(the DataFrame containing the data).
Look at the code below!
12345678910111213# Importing libraries needed import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c5b4ea8f-8a30-439f-9625-ddf2effbd9ac/example5.csv') # Creating the 3-variable lineplot sns.lineplot(x = 'x', y = 'y', hue = 'gender', data=df) # Showing the plot plt.show()
Swipe to start coding
- Import the
seaborn
withsns
alias. - Import the
matplotlib.pyplot
withplt
alias. - Import the
pandas
withpd
alias. - Read the file using
df
variable. - Create a 3-variable lineplot using
'year'
column for the x-value and'population'
column for the y-value and'season'
for the hue-value. - Show the plot.
Løsning
Tak for dine kommentarer!
single
Awesome!
Completion rate improved to 5.88
3-variable Lineplot
Stryg for at vise menuen
With the help of the seaborn
, we can view the dynamics of the population, for example, relative to each season during 10 years by adding the third variable to our lineplot.
To initialize a lineplot based on the pandas
DataFrame, you need to input at least 4 parameters: x
, y
(columns-markers for the plot), hue
(the third variable), and data
(the DataFrame containing the data).
Look at the code below!
12345678910111213# Importing libraries needed import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c5b4ea8f-8a30-439f-9625-ddf2effbd9ac/example5.csv') # Creating the 3-variable lineplot sns.lineplot(x = 'x', y = 'y', hue = 'gender', data=df) # Showing the plot plt.show()
Swipe to start coding
- Import the
seaborn
withsns
alias. - Import the
matplotlib.pyplot
withplt
alias. - Import the
pandas
withpd
alias. - Read the file using
df
variable. - Create a 3-variable lineplot using
'year'
column for the x-value and'population'
column for the y-value and'season'
for the hue-value. - Show the plot.
Løsning
Tak for dine kommentarer!