Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Solving Task Using Gaussian Distribution | Commonly Used Continuous Distributions
Probability Theory Basics

Stryg for at vise menuen

book
Challenge: Solving Task Using Gaussian Distribution

Opgave

Swipe to start coding

Suppose you are going fishing.
One type of fish is well caught at atmospheric pressure from 740 to 760 mm Hg.
Fish of the second species is well caught at a pressure of 750 to 770 mm Hg.

Calculate the probability that the fishing will be successful if the atmospheric pressure is Gaussian distributed with a mean of 760 mm and a mean deviation of 15 mm.

You have to:

  1. Calculate the probability that pressure is in the [740, 760] range.
  2. Calculate the probability that pressure is in the [750, 770] range.
  3. As our events intersect, we must use the inclusive-exclusive principle. Calculate the probability that pressure falls into the intersection of corresponding intervals.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 4. Kapitel 5

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

book
Challenge: Solving Task Using Gaussian Distribution

Opgave

Swipe to start coding

Suppose you are going fishing.
One type of fish is well caught at atmospheric pressure from 740 to 760 mm Hg.
Fish of the second species is well caught at a pressure of 750 to 770 mm Hg.

Calculate the probability that the fishing will be successful if the atmospheric pressure is Gaussian distributed with a mean of 760 mm and a mean deviation of 15 mm.

You have to:

  1. Calculate the probability that pressure is in the [740, 760] range.
  2. Calculate the probability that pressure is in the [750, 770] range.
  3. As our events intersect, we must use the inclusive-exclusive principle. Calculate the probability that pressure falls into the intersection of corresponding intervals.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 4. Kapitel 5
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt