Challenge: Solving the Task Using Geometric Probability
Consider a square with a side length of 2
units centered at the origin (0, 0)
in a Cartesian coordinate system.
What is the probability that a randomly chosen point within the square doesn't fall into a circle with a radius of 1
unit centered at the origin?
As we have a two-dimensional space of elementary events, we can calculate the ratio of the circle's area to the square's area. The ratio represents the probability of a point falling within the circle.
Swipe to start coding
Calculate probability as the ratio between the blue area and the whole area of the square.
Løsning
Tak for dine kommentarer!
single
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Awesome!
Completion rate improved to 3.85
Challenge: Solving the Task Using Geometric Probability
Stryg for at vise menuen
Consider a square with a side length of 2
units centered at the origin (0, 0)
in a Cartesian coordinate system.
What is the probability that a randomly chosen point within the square doesn't fall into a circle with a radius of 1
unit centered at the origin?
As we have a two-dimensional space of elementary events, we can calculate the ratio of the circle's area to the square's area. The ratio represents the probability of a point falling within the circle.
Swipe to start coding
Calculate probability as the ratio between the blue area and the whole area of the square.
Løsning
Tak for dine kommentarer!
Awesome!
Completion rate improved to 3.85single