Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Whitening via Eigenvalue Decomposition | Whitening and Decorrelation
Feature Scaling and Normalization Deep Dive

bookChallenge: Whitening via Eigenvalue Decomposition

Opgave

Swipe to start coding

You are given a dataset X (2D NumPy array) with correlated features. Your goal is to perform feature whitening — transforming the data so that features become uncorrelated and have unit variance, using eigenvalue decomposition of the covariance matrix.

Steps:

  1. Center the data (subtract column means).
  2. Compute the covariance matrix cov_matrix using np.cov(X_centered, rowvar=False).
  3. Perform eigenvalue decomposition with np.linalg.eigh.
  4. Compute a regularized whitening matrix:
    eps = 1e-10
    eig_vals_safe = np.where(eig_vals < eps, eps, eig_vals)
    whitening_matrix = eig_vecs @ np.diag(1.0 / np.sqrt(eig_vals_safe)) @ eig_vecs.T
    
    The eps prevents division by zero for near-zero eigenvalues (rank-deficient data).
  5. Compute the whitened data:
    X_whitened = X_centered @ whitening_matrix
    
  6. Verify that the covariance of X_whitened is close to the identity matrix in the nonzero subspace.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Whitening via Eigenvalue Decomposition

Stryg for at vise menuen

Opgave

Swipe to start coding

You are given a dataset X (2D NumPy array) with correlated features. Your goal is to perform feature whitening — transforming the data so that features become uncorrelated and have unit variance, using eigenvalue decomposition of the covariance matrix.

Steps:

  1. Center the data (subtract column means).
  2. Compute the covariance matrix cov_matrix using np.cov(X_centered, rowvar=False).
  3. Perform eigenvalue decomposition with np.linalg.eigh.
  4. Compute a regularized whitening matrix:
    eps = 1e-10
    eig_vals_safe = np.where(eig_vals < eps, eps, eig_vals)
    whitening_matrix = eig_vecs @ np.diag(1.0 / np.sqrt(eig_vals_safe)) @ eig_vecs.T
    
    The eps prevents division by zero for near-zero eigenvalues (rank-deficient data).
  5. Compute the whitened data:
    X_whitened = X_centered @ whitening_matrix
    
  6. Verify that the covariance of X_whitened is close to the identity matrix in the nonzero subspace.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
single

single

some-alt