Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge | Building and Training Model
Explore the Linear Regression Using Python

Stryg for at vise menuen

book
Challenge

Let’s combine our knowledge!

Opgave

Swipe to start coding

In this task, you build, train and fit your model and make predictions based on it. This time you will make predictions about total_phenols, based on flavanoids. It means that your target now is total_phenols.

Your plan:

  1. [Line #18] Define the target (in this task it's total_phenols).
  2. [Line #25] Split the data 70-30 (70% of the data is for training and 30% is for testing) and insert 1 as a random parameter.
  3. [Line #26] Initialize linear regression model .
  4. [Line #27] Fit the model using your tain data.
  5. [Line #30] Assign np.array() to the variable new_flavanoids if their number is 1 (don't forget to use function .reshape(-1,1)).
  6. [Line #31] Predict and assign the amount of flavanoids to the variable predicted_value.
  7. [Line #32] Print the predicted amount of flavanoids.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

book
Challenge

Let’s combine our knowledge!

Opgave

Swipe to start coding

In this task, you build, train and fit your model and make predictions based on it. This time you will make predictions about total_phenols, based on flavanoids. It means that your target now is total_phenols.

Your plan:

  1. [Line #18] Define the target (in this task it's total_phenols).
  2. [Line #25] Split the data 70-30 (70% of the data is for training and 30% is for testing) and insert 1 as a random parameter.
  3. [Line #26] Initialize linear regression model .
  4. [Line #27] Fit the model using your tain data.
  5. [Line #30] Assign np.array() to the variable new_flavanoids if their number is 1 (don't forget to use function .reshape(-1,1)).
  6. [Line #31] Predict and assign the amount of flavanoids to the variable predicted_value.
  7. [Line #32] Print the predicted amount of flavanoids.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt