Challenge: Detect and Interpret Outliers
Opgave
Swipe to start coding
Given a dataset of daily step counts, your goal is to identify outliers using both boxplots and the IQR (Interquartile Range) method, then provide an interpretation of what these outliers might represent.
- Calculate the first (Q1) and third (Q3) quartiles of the
stepsdata. - Compute the IQR as the difference between Q3 and Q1.
- Determine the lower and upper bounds for outliers using 1.5 * IQR below Q1 and above Q3.
- Identify the indices of the outlier values in the
stepsdata. - Return the indices of the outlier values.
- Print the outlier values.
- Print a brief interpretation of what these outliers might represent.
Løsning
Var alt klart?
Tak for dine kommentarer!
Sektion 2. Kapitel 6
single
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Fantastisk!
Completion rate forbedret til 5.56
Challenge: Detect and Interpret Outliers
Stryg for at vise menuen
Opgave
Swipe to start coding
Given a dataset of daily step counts, your goal is to identify outliers using both boxplots and the IQR (Interquartile Range) method, then provide an interpretation of what these outliers might represent.
- Calculate the first (Q1) and third (Q3) quartiles of the
stepsdata. - Compute the IQR as the difference between Q3 and Q1.
- Determine the lower and upper bounds for outliers using 1.5 * IQR below Q1 and above Q3.
- Identify the indices of the outlier values in the
stepsdata. - Return the indices of the outlier values.
- Print the outlier values.
- Print a brief interpretation of what these outliers might represent.
Løsning
Var alt klart?
Tak for dine kommentarer!
Sektion 2. Kapitel 6
single