Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: ODE Solver Accuracy and Stability | Differential Equations and Dynamic Systems
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Numerical Methods for Scientific Computing with Python

bookChallenge: ODE Solver Accuracy and Stability

You will implement and compare two numerical ODE solvers for the initial value problem (IVP):

dydt=f(t,y),y(t0)=y0\frac{dy}{dt} = f(t, y), \qquad y(t_0)=y_0

You will implement:

Euler Method

  • First-order method (less accurate).
  • Can become unstable for stiff or sensitive problems.

Runge–Kutta 4 (RK4)

  • Fourth-order method (more accurate).
  • Typically more stable than Euler for the same step size.

You will solve the test ODE:

dydt=y,y(0)=1\frac{dy}{dt} = y,\quad y(0)=1

The analytical solution is:

y(t)=ety(t)=e^t
Opgave

Swipe to start coding

  • Implement euler_solver and rk4_solver.
  • Use a fixed step size h and integrate from t0 to t_end.
  • Return the final value (y(tend)y(t_{end})).
  • Compute the absolute error compared to (etende^{t_{end}}).

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Can you show me how to implement the Euler method for this ODE?

Can you explain how the RK4 method works for this problem?

How do the numerical solutions compare to the analytical solution?

close

bookChallenge: ODE Solver Accuracy and Stability

Stryg for at vise menuen

You will implement and compare two numerical ODE solvers for the initial value problem (IVP):

dydt=f(t,y),y(t0)=y0\frac{dy}{dt} = f(t, y), \qquad y(t_0)=y_0

You will implement:

Euler Method

  • First-order method (less accurate).
  • Can become unstable for stiff or sensitive problems.

Runge–Kutta 4 (RK4)

  • Fourth-order method (more accurate).
  • Typically more stable than Euler for the same step size.

You will solve the test ODE:

dydt=y,y(0)=1\frac{dy}{dt} = y,\quad y(0)=1

The analytical solution is:

y(t)=ety(t)=e^t
Opgave

Swipe to start coding

  • Implement euler_solver and rk4_solver.
  • Use a fixed step size h and integrate from t0 to t_end.
  • Return the final value (y(tend)y(t_{end})).
  • Compute the absolute error compared to (etende^{t_{end}}).

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
single

single

some-alt