Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære F1 Score | Classification Metrics
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Evaluation Metrics in Machine Learning with Python

bookF1 Score

12345678910
from sklearn.metrics import f1_score # Simulated true labels and predicted labels for a classification task y_true = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0] y_pred = [1, 0, 1, 0, 0, 1, 1, 0, 0, 0] # Calculate the F1 score f1 = f1_score(y_true, y_pred) print(f"F1 Score: {f1:.2f}")
copy
question mark

Select the correct answer

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 3

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Can you explain the difference between precision and recall in more detail?

When should I use the F1 score instead of accuracy?

How do I interpret the F1 score value in practice?

bookF1 Score

Stryg for at vise menuen

12345678910
from sklearn.metrics import f1_score # Simulated true labels and predicted labels for a classification task y_true = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0] y_pred = [1, 0, 1, 0, 0, 1, 1, 0, 0, 0] # Calculate the F1 score f1 = f1_score(y_true, y_pred) print(f"F1 Score: {f1:.2f}")
copy
question mark

Select the correct answer

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 3
some-alt