Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Classification Metrics | Classification Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Classification Metrics

Opgave

Swipe to start coding

You are given a simple binary classification dataset. Your task is to:

  1. Train a Logistic Regression model using scikit-learn.

  2. Evaluate it with the following metrics:

    • Accuracy.
    • Precision.
    • Recall.
    • F1 Score.
    • ROC–AUC Score.
    • Confusion Matrix.
  3. Perform 5-fold cross-validation and report the mean accuracy.

Finally, print all results clearly formatted, as shown below.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 7
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Classification Metrics

Stryg for at vise menuen

Opgave

Swipe to start coding

You are given a simple binary classification dataset. Your task is to:

  1. Train a Logistic Regression model using scikit-learn.

  2. Evaluate it with the following metrics:

    • Accuracy.
    • Precision.
    • Recall.
    • F1 Score.
    • ROC–AUC Score.
    • Confusion Matrix.
  3. Perform 5-fold cross-validation and report the mean accuracy.

Finally, print all results clearly formatted, as shown below.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 7
single

single

some-alt