Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Data Preprocessing | Identifying Fake News
Identifying Fake News

book
Data Preprocessing

As a mandatory step in our analysis, we must preprocess our data. Data preprocessing is the process of cleaning, transforming, and organizing the data to make it more suitable for analysis and modeling. This typically involves several steps, such as the following:

  • removing missing or duplicate values;

  • correcting inconsistencies;

  • transforming the data into a format that is easier to manage.

Aufgabe

Swipe to start coding

  1. Remove unnecessary columns (for our further analysis): 'title', 'subject', and 'date'.

  2. Use the appropriate method to remove duplicates.

  3. Use the appropriate methods to shuffle the DataFrame and reset its index.

  4. Use the appropriate method to check for missing values (NaN values).

Lösung

# Remove unnecessary columns
news = news_merged.drop(['title', 'subject', 'date'], axis=1)

# Remove duplicates
news = news.drop_duplicates()

# Shuffle the DataFrame and reset the index
news = news.sample(frac=1).reset_index(drop=True)

# Check for missing values (NaN values)
news.isna().sum()

Mark tasks as Completed
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 3
AVAILABLE TO ULTIMATE ONLY
some-alt