Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Autoencoder Implementation | VAE implementation
Image Synthesis Through Generative Networks

bookAutoencoder Implementation

Finally, we can bring it all together and create an autoencoder that restores the input image with the highest possible quality.

We will use the MNIST dataset because it is relatively simple, and the training time for our network will not be too long.

Note

You can find the source code via the following Link. If you want to run the code or even change some components, you can copy the notebook and work with the copy.

We can see that our model accurately restores handwritten digits.
However, if we attempt to generate new data using samples from a Gaussian distribution, the images appear smoothed and resemble random, unstructured noise.

To address this issue, we need to regularize our latent space by using a Variational Autoencoder (VAE).

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 3

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Fragen Sie mich Fragen zu diesem Thema

Zusammenfassen Sie dieses Kapitel

Zeige reale Beispiele

Awesome!

Completion rate improved to 5.26

bookAutoencoder Implementation

Swipe um das Menü anzuzeigen

Finally, we can bring it all together and create an autoencoder that restores the input image with the highest possible quality.

We will use the MNIST dataset because it is relatively simple, and the training time for our network will not be too long.

Note

You can find the source code via the following Link. If you want to run the code or even change some components, you can copy the notebook and work with the copy.

We can see that our model accurately restores handwritten digits.
However, if we attempt to generate new data using samples from a Gaussian distribution, the images appear smoothed and resemble random, unstructured noise.

To address this issue, we need to regularize our latent space by using a Variational Autoencoder (VAE).

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 3
some-alt