Replace Categorical Missing Data with Values
To deal with categorical data:
- replace with some constant or the most popular value
 - create a new category for these values. -process the data after converting it to the numerical. We'll use this approach later.
 
Let's explore for each column Cabin and Embarked(these columns contain NaNs) and figure out how to proceed with the NaNs.
Aufgabe
Swipe to start coding
- Explore the share of NaNs for each of the given columns. Print these values.
 - For 
Embarkedcolumn, simply drop the missing values, since there are only 2 rows containing it. - For the 
Cabin, about 77% of data is missing (if everything is done correct). That's why we'll replace NaNs with some new value. To do that: 
- print all the unique values for the 
Cabincolumn. - choose any other vlaue except already presented in the 
Cabincolumn and replace all NaNs with it. (For example, it can be 'Z' or 'X'). 
Check some data samples to see the modified dataframe.
Lösung
War alles klar?
Danke für Ihr Feedback!
Abschnitt 2. Kapitel 5
single
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Awesome!
Completion rate improved to 5.56
Replace Categorical Missing Data with Values
Swipe um das Menü anzuzeigen
To deal with categorical data:
- replace with some constant or the most popular value
 - create a new category for these values. -process the data after converting it to the numerical. We'll use this approach later.
 
Let's explore for each column Cabin and Embarked(these columns contain NaNs) and figure out how to proceed with the NaNs.
Aufgabe
Swipe to start coding
- Explore the share of NaNs for each of the given columns. Print these values.
 - For 
Embarkedcolumn, simply drop the missing values, since there are only 2 rows containing it. - For the 
Cabin, about 77% of data is missing (if everything is done correct). That's why we'll replace NaNs with some new value. To do that: 
- print all the unique values for the 
Cabincolumn. - choose any other vlaue except already presented in the 
Cabincolumn and replace all NaNs with it. (For example, it can be 'Z' or 'X'). 
Check some data samples to see the modified dataframe.
Lösung
War alles klar?
Danke für Ihr Feedback!
Abschnitt 2. Kapitel 5
single