Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Comparing Outlier Detection Algorithms | Evaluation and Practical Comparison
Outlier and Novelty Detection in Practice

bookComparing Outlier Detection Algorithms

When you face real-world data, choosing the right outlier detection algorithm is crucial. Each method—Isolation Forest, One-Class SVM, Local Outlier Factor (LOF), and Robust Covariance—embodies different logic, assumptions, and strengths. The following table summarizes how these algorithms approach outlier detection:

You can use this summary to quickly reference which method aligns with your data’s characteristics and your project’s requirements.

Note
Note

When choosing an outlier detection algorithm, interpretability, scalability, and robustness often trade off against each other. Isolation Forest is highly scalable and robust to high-dimensional data but less interpretable, as the logic behind each individual outlier score is not transparent. One-Class SVM offers flexibility through kernels but can be computationally demanding and less interpretable for complex kernels. LOF excels in finding local anomalies but may struggle with very large datasets due to its reliance on distance calculations. Robust Covariance is interpretable and effective for data following a Gaussian distribution but is sensitive to high dimensionality and non-Gaussian data.

12345678910111213141516171819202122232425262728293031323334353637383940414243
import numpy as np from sklearn.ensemble import IsolationForest from sklearn.svm import OneClassSVM from sklearn.neighbors import LocalOutlierFactor from sklearn.covariance import EllipticEnvelope from sklearn.datasets import make_blobs import matplotlib.pyplot as plt # Generate synthetic data with outliers X, _ = make_blobs(n_samples=300, centers=1, cluster_std=1.0, random_state=42) rng = np.random.RandomState(42) outliers = rng.uniform(low=-6, high=6, size=(20, 2)) X = np.vstack([X, outliers]) # Fit models iso = IsolationForest(contamination=0.06, random_state=42) svm = OneClassSVM(nu=0.06, kernel="rbf", gamma=0.1) lof = LocalOutlierFactor(n_neighbors=20, contamination=0.06) cov = EllipticEnvelope(contamination=0.06, random_state=42) y_pred_iso = iso.fit_predict(X) y_pred_svm = svm.fit(X).predict(X) y_pred_lof = lof.fit_predict(X) y_pred_cov = cov.fit(X).predict(X) algorithms = [ ("Isolation Forest", y_pred_iso), ("One-Class SVM", y_pred_svm), ("LOF", y_pred_lof), ("Robust Covariance", y_pred_cov) ] plt.figure(figsize=(12, 8)) for i, (name, y_pred) in enumerate(algorithms, 1): plt.subplot(2, 2, i) plt.scatter(X[:, 0], X[:, 1], c=(y_pred == -1), cmap="coolwarm", edgecolor="k", s=30) plt.title(name) plt.xticks([]) plt.yticks([]) plt.xlabel("Feature 1") plt.ylabel("Feature 2") plt.tight_layout() plt.show()
copy
question mark

Which of the following statements accurately describe the trade-offs between Isolation Forest, One-Class SVM, Local Outlier Factor (LOF), and Robust Covariance?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 6. Kapitel 1

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Awesome!

Completion rate improved to 4.55

bookComparing Outlier Detection Algorithms

Swipe um das Menü anzuzeigen

When you face real-world data, choosing the right outlier detection algorithm is crucial. Each method—Isolation Forest, One-Class SVM, Local Outlier Factor (LOF), and Robust Covariance—embodies different logic, assumptions, and strengths. The following table summarizes how these algorithms approach outlier detection:

You can use this summary to quickly reference which method aligns with your data’s characteristics and your project’s requirements.

Note
Note

When choosing an outlier detection algorithm, interpretability, scalability, and robustness often trade off against each other. Isolation Forest is highly scalable and robust to high-dimensional data but less interpretable, as the logic behind each individual outlier score is not transparent. One-Class SVM offers flexibility through kernels but can be computationally demanding and less interpretable for complex kernels. LOF excels in finding local anomalies but may struggle with very large datasets due to its reliance on distance calculations. Robust Covariance is interpretable and effective for data following a Gaussian distribution but is sensitive to high dimensionality and non-Gaussian data.

12345678910111213141516171819202122232425262728293031323334353637383940414243
import numpy as np from sklearn.ensemble import IsolationForest from sklearn.svm import OneClassSVM from sklearn.neighbors import LocalOutlierFactor from sklearn.covariance import EllipticEnvelope from sklearn.datasets import make_blobs import matplotlib.pyplot as plt # Generate synthetic data with outliers X, _ = make_blobs(n_samples=300, centers=1, cluster_std=1.0, random_state=42) rng = np.random.RandomState(42) outliers = rng.uniform(low=-6, high=6, size=(20, 2)) X = np.vstack([X, outliers]) # Fit models iso = IsolationForest(contamination=0.06, random_state=42) svm = OneClassSVM(nu=0.06, kernel="rbf", gamma=0.1) lof = LocalOutlierFactor(n_neighbors=20, contamination=0.06) cov = EllipticEnvelope(contamination=0.06, random_state=42) y_pred_iso = iso.fit_predict(X) y_pred_svm = svm.fit(X).predict(X) y_pred_lof = lof.fit_predict(X) y_pred_cov = cov.fit(X).predict(X) algorithms = [ ("Isolation Forest", y_pred_iso), ("One-Class SVM", y_pred_svm), ("LOF", y_pred_lof), ("Robust Covariance", y_pred_cov) ] plt.figure(figsize=(12, 8)) for i, (name, y_pred) in enumerate(algorithms, 1): plt.subplot(2, 2, i) plt.scatter(X[:, 0], X[:, 1], c=(y_pred == -1), cmap="coolwarm", edgecolor="k", s=30) plt.title(name) plt.xticks([]) plt.yticks([]) plt.xlabel("Feature 1") plt.ylabel("Feature 2") plt.tight_layout() plt.show()
copy
question mark

Which of the following statements accurately describe the trade-offs between Isolation Forest, One-Class SVM, Local Outlier Factor (LOF), and Robust Covariance?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 6. Kapitel 1
some-alt