Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Mahalanobis Distance in Practice | Statistical and Distance-Based Methods
Outlier and Novelty Detection in Practice

bookChallenge: Mahalanobis Distance in Practice

Aufgabe

Swipe to start coding

You are given a small 2D dataset. Your goal is to compute the Mahalanobis distance of each observation from the data center and use it to detect outliers.

Steps:

  1. Compute the mean vector of the dataset.
  2. Compute the covariance matrix and its inverse.
  3. For each observation, compute Mahalanobis distance using the formula:

[ D(x) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)} ] 4. Store all distances in an array distances. 5. Classify points as outliers if distance > threshold (use threshold = 2.5). 6. Print both arrays (distances and outliers) for verification.

Use NumPy only.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain this in simpler terms?

What are the main takeaways from this?

Can you give me a real-world example?

close

Awesome!

Completion rate improved to 4.55

bookChallenge: Mahalanobis Distance in Practice

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

You are given a small 2D dataset. Your goal is to compute the Mahalanobis distance of each observation from the data center and use it to detect outliers.

Steps:

  1. Compute the mean vector of the dataset.
  2. Compute the covariance matrix and its inverse.
  3. For each observation, compute Mahalanobis distance using the formula:

[ D(x) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)} ] 4. Store all distances in an array distances. 5. Classify points as outliers if distance > threshold (use threshold = 2.5). 6. Print both arrays (distances and outliers) for verification.

Use NumPy only.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
single

single

some-alt