Challenge: Remove Duplicate Rows
Ensuring that your data contains only unique records is crucial for accurate analysis. Duplicate rows can distort statistics, lead to misleading results, and undermine the reliability of your conclusions. By removing duplicates, you help guarantee that every observation is counted just once, maintaining the integrity of your dataset.
12345678910import pandas as pd data = { "Name": ["Alice", "Bob", "Alice", "Charlie", "Bob"], "Age": [25, 30, 25, 35, 30], "City": ["New York", "Paris", "New York", "London", "Paris"] } df = pd.DataFrame(data) print(df)
Swipe to start coding
Write a function that returns a DataFrame with all duplicate rows removed.
- The function must return a DataFrame that contains only the first occurrence of each unique row.
- All duplicate rows must be excluded from the result.
Lösung
Danke für Ihr Feedback!
single
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
How can I remove duplicate rows from this DataFrame?
Can I keep only the first occurrence of each duplicate?
What if I want to identify duplicates without removing them?
Großartig!
Completion Rate verbessert auf 5.56
Challenge: Remove Duplicate Rows
Swipe um das Menü anzuzeigen
Ensuring that your data contains only unique records is crucial for accurate analysis. Duplicate rows can distort statistics, lead to misleading results, and undermine the reliability of your conclusions. By removing duplicates, you help guarantee that every observation is counted just once, maintaining the integrity of your dataset.
12345678910import pandas as pd data = { "Name": ["Alice", "Bob", "Alice", "Charlie", "Bob"], "Age": [25, 30, 25, 35, 30], "City": ["New York", "Paris", "New York", "London", "Paris"] } df = pd.DataFrame(data) print(df)
Swipe to start coding
Write a function that returns a DataFrame with all duplicate rows removed.
- The function must return a DataFrame that contains only the first occurrence of each unique row.
- All duplicate rows must be excluded from the result.
Lösung
Danke für Ihr Feedback!
single