Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Standardize Categorical Values | Ensuring Data Consistency and Correctness
Python for Data Cleaning

bookChallenge: Standardize Categorical Values

When working with real-world data, you often encounter categorical values that are meant to represent the same thing but are written in different ways. For example, a survey might record responses such as Yes, yes, and YES in the same column. These inconsistencies can cause problems when you try to analyze or summarize your data, since Python and pandas treat these as distinct values. Standardizing these entries is essential to ensure your data is consistent and your results are accurate.

1234567
import pandas as pd data = { "Response": ["Yes", "no", "YES", "No", "yes", "NO", "nO", "YeS"] } df = pd.DataFrame(data) print(df)
copy
Aufgabe

Swipe to start coding

Write a function that standardizes all values in a specified column of a DataFrame to lowercase.

Your function must:

  • Modify the DataFrame so that every value in the given column is converted to lowercase.
  • Return the modified DataFrame.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 3
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

How can I standardize the values in the 'Response' column?

Why is it important to clean categorical data before analysis?

Can you show me how to count the number of 'Yes' and 'No' responses after standardizing?

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Standardize Categorical Values

Swipe um das Menü anzuzeigen

When working with real-world data, you often encounter categorical values that are meant to represent the same thing but are written in different ways. For example, a survey might record responses such as Yes, yes, and YES in the same column. These inconsistencies can cause problems when you try to analyze or summarize your data, since Python and pandas treat these as distinct values. Standardizing these entries is essential to ensure your data is consistent and your results are accurate.

1234567
import pandas as pd data = { "Response": ["Yes", "no", "YES", "No", "yes", "NO", "nO", "YeS"] } df = pd.DataFrame(data) print(df)
copy
Aufgabe

Swipe to start coding

Write a function that standardizes all values in a specified column of a DataFrame to lowercase.

Your function must:

  • Modify the DataFrame so that every value in the given column is converted to lowercase.
  • Return the modified DataFrame.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 3
single

single

some-alt