Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Convert Data Types | Ensuring Data Consistency and Correctness
Python for Data Cleaning

bookChallenge: Convert Data Types

Ensuring that each column in your dataset has the correct data type is fundamental for accurate analysis and computation. When columns meant to represent numbers are stored as strings, calculations and statistical operations may fail or produce incorrect results. This is especially common when importing data from CSV files, spreadsheets, or external sources, where values such as numbers or dates are sometimes interpreted as text. Converting these columns to their appropriate data types ensures that you can perform mathematical operations, aggregations, and visualizations without unexpected errors or misleading outcomes.

12345678910111213
import pandas as pd # Sample data where the 'price' and 'quantity' columns are stored as strings data = { 'item': ['apple', 'banana', 'orange'], 'price': ['1.20', '0.80', '1.00'], 'quantity': ['10', '25', '15'] } df = pd.DataFrame(data) print(df) print(df.dtypes)
copy
Aufgabe

Swipe to start coding

Write a function that converts the values in a specified column of a DataFrame to float type.
The function must:

  • Take a DataFrame and a column name as arguments.
  • Convert all values in the specified column to float type.
  • Return the converted column.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Convert Data Types

Swipe um das Menü anzuzeigen

Ensuring that each column in your dataset has the correct data type is fundamental for accurate analysis and computation. When columns meant to represent numbers are stored as strings, calculations and statistical operations may fail or produce incorrect results. This is especially common when importing data from CSV files, spreadsheets, or external sources, where values such as numbers or dates are sometimes interpreted as text. Converting these columns to their appropriate data types ensures that you can perform mathematical operations, aggregations, and visualizations without unexpected errors or misleading outcomes.

12345678910111213
import pandas as pd # Sample data where the 'price' and 'quantity' columns are stored as strings data = { 'item': ['apple', 'banana', 'orange'], 'price': ['1.20', '0.80', '1.00'], 'quantity': ['10', '25', '15'] } df = pd.DataFrame(data) print(df) print(df.dtypes)
copy
Aufgabe

Swipe to start coding

Write a function that converts the values in a specified column of a DataFrame to float type.
The function must:

  • Take a DataFrame and a column name as arguments.
  • Convert all values in the specified column to float type.
  • Return the converted column.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 4
single

single

some-alt