Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Implement Particle Swarm Optimization | Swarm-Based Algorithms
Bio-Inspired Algorithms

bookChallenge: Implement Particle Swarm Optimization

Aufgabe

Swipe to start coding

You are asked to implement the core update logic for a Particle Swarm Optimization (PSO) algorithm. The goal is to find the minimum of the function f(x) = x² + 5 * sin(x) on the interval [-10, 10].

All the parameters (like inertia w, cognitive c1, and social c2) and initial lists (positions, velocities, pbest_positions, pbest_values, gbest_position, gbest_value) are already set up for you.

Your task is to fill in the main iterative process:

  1. Inside the inner for loop (for each particle i), you must first update the particle's velocity. Use the full PSO velocity update equation: w * velocities[i] + c1 * r1 * (pbest_positions[i] - positions[i]) + c2 * r2 * (gbest_position - positions[i]).
  2. Update the particle's position by adding its new velocities[i] to positions[i].
  3. After calculating the new value at positions[i], check if this new value is better than the particle's personal best (pbest_values[i]). If it is, you must update both pbest_positions[i] and pbest_values[i].
  4. After the inner loop (which updates all particles), check if the new best personal value (which you find and store in min_value) is better than the current global best (gbest_value). If it is, update both gbest_value and gbest_position.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Implement Particle Swarm Optimization

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

You are asked to implement the core update logic for a Particle Swarm Optimization (PSO) algorithm. The goal is to find the minimum of the function f(x) = x² + 5 * sin(x) on the interval [-10, 10].

All the parameters (like inertia w, cognitive c1, and social c2) and initial lists (positions, velocities, pbest_positions, pbest_values, gbest_position, gbest_value) are already set up for you.

Your task is to fill in the main iterative process:

  1. Inside the inner for loop (for each particle i), you must first update the particle's velocity. Use the full PSO velocity update equation: w * velocities[i] + c1 * r1 * (pbest_positions[i] - positions[i]) + c2 * r2 * (gbest_position - positions[i]).
  2. Update the particle's position by adding its new velocities[i] to positions[i].
  3. After calculating the new value at positions[i], check if this new value is better than the particle's personal best (pbest_values[i]). If it is, you must update both pbest_positions[i] and pbest_values[i].
  4. After the inner loop (which updates all particles), check if the new best personal value (which you find and store in min_value) is better than the current global best (gbest_value). If it is, update both gbest_value and gbest_position.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 4
single

single

some-alt